ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 1443

High-dimensional Analyses of Checkpoint-inhibitor Related Arthritis Synovial Fluid Cells Reveal a Unique, Proliferating CD38hi Cytotoxic CD8 T Cell Population Induced by Type I IFN

Runci Wang1, Karmela Kim Chan2, Amy Cunningham-Bussel1, Gregory Vitone3, Aidan Tirpack2, Caroline Benson2, Gregory Keras4, Anna Helena Jonsson5, Michael Brenner5, Laura Donlin6, Anne Bass7 and Deepak Rao1, 1Brigham and Women's Hospital, Boston, MA, 2Hospital For Special Surgery, New York, NY, 3Hospital for Special Surgery, New York, 4Brigham and Women’s Hospital, Division of Rheumatology, Inflammation, and Immunity, Boston, MA, 5Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 6Hospital for Special Surgery, Weill Cornell Medicine, New York, 7Hospital for Special Surgery/Weill Cornell Medicine, New York, NY

Meeting: ACR Convergence 2020

Keywords: Cytotoxic Cells, genomics, interferon, Miscellaneous Rheumatic and Inflammatory Diseases, T Cell

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Date: Sunday, November 8, 2020

Title: Plenary Session III (1441–1446)

Session Type: Plenary Session

Session Time: 11:30AM-1:00PM

Background/Purpose: Checkpoint inhibitors (CI) used to treat cancer frequently trigger immune-related adverse events, including inflammatory arthritis. CI-related arthritis (CIrA) occurs in ~5% of treated patients, with clinical manifestations resembling rheumatoid arthritis (RA) and spondyloarthropathies (SpA). However, the cellular and molecular features of CIrA remain unknown, calling for a deeper understanding of its pathogenesis.

Methods: We conducted detailed immunophenotyping of synovial fluid (SF) mononuclear cells to compare CIrA, seropositive RA, and SpA using mass cytometry (CyTOF) (CIrA n=10, anti-PD-1-treated; 5 mono/oligoarthritis, 5 polyarthritis; RA n=11; SpA n=9). Significantly altered populations (p< 0.05) were identified using FlowSOM and validated by flow cytometry in additional SF and blood samples (CIrA n=15; RA n=15). SF CD8 T cell subpopulations were sorted for RNA-seq and intracellular staining. Transcriptomic features were recognized by identifying differentially expressed genes and by Gene Set Enrichment Analysis (GSEA) (q< 0.25). RA SF cells were cultured with cytokines (IFNα 1kU/mL or IFNγ 50ng/mL) and anti-CD3/CD28 for 72 hours and analyzed by flow cytometry.

Results: FlowSOM analysis of SF CyTOF revealed a CD38hiCD127– PD-1+ CD8 cell population uniquely expanded in CIrA (~25% of CD8 in CIrA, a 3.4-fold increase over RA/SpA), which was confirmed in additional SF samples by flow cytometry. In contrast, T cells with the converse CD38–CD127+ phenotype were reduced in CIrA compared to RA/SpA. CD38hiCD127– CD8 cells were also expanded in blood of CIrA patients (5% of CD8 in CIrA, a 2.8-fold increase over RA) (Fig. 1).

RNA-seq analysis of the expanded CD38hiCD127– subset revealed significantly increased expression of inflammatory and cytotoxic molecules including granzyme A/B/H/K, perforin and IFNγ, with expression levels of these genes comparable to those in sorted KLRG1+ cytotoxic T cells. Flow cytometry of ex vivo stimulated T cells confirmed a higher frequency of granzyme B+ and perforin+ cells in the CD38hiCD127- population (Fig. 2). GSEA revealed an increased proliferation signature in CD38hiCD127– cells compared to CD38–CD127+ cells, with upregulation of genes involved in DNA replication, mitosis and cell division (q< 0.1, FC >1.5 over CD38–CD127+ cells). This feature was not shared by PD1– cells or KLRG1+ cells (Fig 3). CyTOF confirmed >40% of CD38hi CD127– PD-1+ CD8 T cells expressed Ki67. GSEA of SF T cells also revealed a marked enrichment of IFN-inducible genes in CIrA compared to SpA/RA. Treatment of RA SF T cells with IFNα, but not IFNγ, induced CD8 T cells to acquire a CD38hiCD127– phenotype resembling that seen in CIrA (Fig. 3).

Conclusion: CyTOF analysis of SF mononuclear cells revealed a highly expanded PD-1+CD38hiCD127– CD8 T cell population in CIrA that is not shared by RA or SpA. This T cell subset shows cytotoxic and proliferative features at both the gene and protein expression level. CD38hiCD127– CD8 T cells in CIrA samples showed an IFN signature, and treatment of T cells with IFNα induced this phenotype in vitro. This work reveals a unique T cell phenotype in CIrA and suggests type I IFN may be a pathologic driver in this condition.

Figure 1. FlowSOM analysis of CD8 T cells revealed the expansion of a PD-1+CD38hiCD127- population in synovial fluid and peripheral blood of checkpoint inhibitor-related arthritis (CIrA). A) FlowSOM analysis of CyTOF CD8 T cells highlighted an expanded metacluster 2 in CIrA SF (Kruskal-Wallis test, CIrA n=6, RA/SpA n=5). B) Biaxial gating of flow cytometry data confirmed expanded CD38hiCD127-PD1+ cells and reduced CD38-CD127+ CD8 T cells in CIrA SF (Kruskal-Wallis test, n=7). C) CD38hiCD127- CD8 cells are expanded in blood of CIrA patients (t-test, n=15). Mean±SD shown, **p < 0.01.

Figure 2. RNA-seq analysis and flow cytometry staining of CD38hiCD127- CD8 T cells in CIrA SF demonstrated cytotoxic and inflammatory features. A) Heatmap of cytotoxic molecules enriched in CD38hiCD127- cells. B) Enrichment of intracellular granzyme B and perforin in sorted CD38hiCD127- CD8 T cells. Mean±SD shown, *p < 0.05, **p < 0.01.

Figure 3. CD38hiCD127- CD8 T cells in CIrA SF showed a proliferation feature, and a phenotype induced by IFNα. A) GSEA identified enrichment of proliferation gene sets in CD38hiCD127- CD8 T cells; B) Heatmap of proliferation genes enriched in CD38hiCD127- CD8 T cells. C) CyTOF showed increased expression of Ki67 in CD38hiCD127- CD8 T cells. D) GSEA showed an IFN signature in CIrA cells. E) RA SF cells were cultured unstimulated or stimulated with anti-CD3/28 activation beads with or without IFNα or IFNγ as indicated for 72 hours. CD38hiCD127- phenotype resembling that seen in CIrA was induced by IFNα but not IFNγ. Mean±SD shown, *p < 0.05, **p < 0.01.


Disclosure: R. Wang, None; K. Chan, None; A. Cunningham-Bussel, None; G. Vitone, None; A. Tirpack, None; C. Benson, None; G. Keras, None; A. Jonsson, None; M. Brenner, None; L. Donlin, Stryker, 1, 2; A. Bass, None; D. Rao, None.

To cite this abstract in AMA style:

Wang R, Chan K, Cunningham-Bussel A, Vitone G, Tirpack A, Benson C, Keras G, Jonsson A, Brenner M, Donlin L, Bass A, Rao D. High-dimensional Analyses of Checkpoint-inhibitor Related Arthritis Synovial Fluid Cells Reveal a Unique, Proliferating CD38hi Cytotoxic CD8 T Cell Population Induced by Type I IFN [abstract]. Arthritis Rheumatol. 2020; 72 (suppl 10). https://acrabstracts.org/abstract/high-dimensional-analyses-of-checkpoint-inhibitor-related-arthritis-synovial-fluid-cells-reveal-a-unique-proliferating-cd38hi-cytotoxic-cd8-t-cell-population-induced-by-type-i-ifn/. Accessed .
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to ACR Convergence 2020

ACR Meeting Abstracts - https://acrabstracts.org/abstract/high-dimensional-analyses-of-checkpoint-inhibitor-related-arthritis-synovial-fluid-cells-reveal-a-unique-proliferating-cd38hi-cytotoxic-cd8-t-cell-population-induced-by-type-i-ifn/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology