ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 110

Bioinformatics Analysis of Transcriptomics Data Reveals That SRSF1 Is a Novel Molecular Brake for the T Cell Activation Program and Controls Key Cytokine Signaling Genes Implicated in Systemic Lupus Erythematosus

Rhea Bhargava1, Michelle S. Lee 2, Takayuki Katsuyama 3 and Vaishali R. Moulton 3, 1Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, 2Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 3Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA

Meeting: 2019 ACR/ARP Annual Meeting

Keywords: autoimmunity and Gene Expression, Bioinformatics, SLE, T cells

  • Tweet
  • Email
  • Print
Session Information

Date: Sunday, November 10, 2019

Title: T Cell Biology & Targets in Autoimmune & Inflammatory Disease Poster

Session Type: Poster Session (Sunday)

Session Time: 9:00AM-11:00AM

Background/Purpose: T cells from systemic lupus erythematosus (SLE) patients exhibit a hyperactive phenotype with defects in homeostasis, signaling and cytokine production. By discovery approaches, we previously identified the serine arginine-rich splicing factor 1 (SRSF1) in human T cells and showed that it controls genes involved in signaling and cytokine production. We further showed that SRSF1 expression is decreased in SLE T cells, and associates with worse disease. We recently found that mice with conditional knockout of Srsf1 in T cells (Srsf1-T cell ko) exhibit T cell hyperactivity, systemic autoimmunity and lupus nephritis. However, little is known about the molecular targets controlled by SRSF1. Our goal is to identify the genes and pathways controlled by SRSF1 in mice and by comparative analysis evaluate if these are implicated in SLE.

Methods: Effector CD4 T (Teff) cells were generated by stimulating naïve CD4 T cells from spleens of Srsf1-T cell-ko or control WT (n=3) mice for 72h with CD3/CD28 antibodies. RNA from CD4 Teffs was subjected to RNA-sequencing (R-seq). Data was analyzed for differentially expressed (DE) genes, gene set enrichment, Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) pathways. Gene expression omnibus (GEO)2R was used to identify a publicly available dataset (GDS4888) from CD4 T cells in patients with active SLE (n=6, SLEDAI range 6-22, ANA and dsDNA positive) and 4 healthy controls. Comparative analysis of mouse (Srsf1-T cell ko) and human (SLE) gene array data was performed using Metascape to identify overlapping gene signatures in SLE patients controlled by SRSF1.

Results: R-seq analysis from CD4 Teff cells of Srsf1-T cell ko mice revealed 608 significant DE genes compared to WT mice at the 2-fold cutoff with p< 0.05. In the human SLE CD4 T cells transcriptomics analysis, SRSF1 was confirmed to be significantly downregulated in active SLE patients compared to healthy controls. 290 genes were significantly (p< 0.05) changed between patients with active SLE and healthy controls. The top pathways represented in the DE genes in ko mice were cell cycle, Th1 and Th2 differentiation, Th17 differentiation and cytokine-cytokine receptor interaction. Overall the CD4 Teffs showed an elevated T cell activation gene signature. Pathway analysis of the 290 DE genes in SLE patients identified interferon signaling, cytokine production, cytokine receptor interaction, cell migration and lysosomal clearance pathways. Overlapping genes between human and mouse transcriptomics data were analyzed. Specifically, we found 11 genes (CCR1, RHOG, ELL2, IFI16, IFIT3, OAS2, ZER1, PRKD2, RGS3, SAT1, SOCS1) to be significantly altered in active SLE patients, which were regulated by SRSF1 as confirmed by our mouse R-seq analysis.

Conclusion: SRSF1 controls genes involved in T cell homeostasis, activation, cytokine regulation/signaling and differentiation, which are altered in patients with active SLE. Therefore SRSF1 is an important regulator of T cell function and its deficiency may lead to the hyperactive T cell phenotype in active SLE patients. Targeting SRSF1 to correct the aberrant T cell phenotype may lead to novel therapeutics particularly in SLE patients with decreased SRSF1.


Disclosure: R. Bhargava, None; M. Lee, None; T. Katsuyama, None; V. Moulton, None.

To cite this abstract in AMA style:

Bhargava R, Lee M, Katsuyama T, Moulton V. Bioinformatics Analysis of Transcriptomics Data Reveals That SRSF1 Is a Novel Molecular Brake for the T Cell Activation Program and Controls Key Cytokine Signaling Genes Implicated in Systemic Lupus Erythematosus [abstract]. Arthritis Rheumatol. 2019; 71 (suppl 10). https://acrabstracts.org/abstract/bioinformatics-analysis-of-transcriptomics-data-reveals-that-srsf1-is-a-novel-molecular-brake-for-the-t-cell-activation-program-and-controls-key-cytokine-signaling-genes-implicated-in-systemic-lupus-e/. Accessed .
  • Tweet
  • Email
  • Print

« Back to 2019 ACR/ARP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/bioinformatics-analysis-of-transcriptomics-data-reveals-that-srsf1-is-a-novel-molecular-brake-for-the-t-cell-activation-program-and-controls-key-cytokine-signaling-genes-implicated-in-systemic-lupus-e/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology