ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 0066

AMP Deaminase 2 Is Expressed on the Surface of Human Immune Cells as a Novel Regulator of Extracellular Adenosine Metabolism

Lisa Ehlers1, Aditi Kuppe1, Marieluise Kirchner2, Alexandra Damerau1, Cindy Strehl1, Frank Buttgereit3 and Timo Gaber1, 1Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany, 2Max Delbrück Center for Molecular Medicine, BIH Core Facility Proteomics, Berlin, Germany, 3Charité University Medicine, Berlin, Germany

Meeting: ACR Convergence 2020

Keywords: hypoxia, Monocytes/macrophages, rheumatoid arthritis

  • Tweet
  • Email
  • Print
Session Information

Date: Friday, November 6, 2020

Title: Innate Immunity Poster

Session Type: Poster Session A

Session Time: 9:00AM-11:00AM

Background/Purpose: Adenosine and its nucleotides represent crucial immunomodulators in the extracellular environment. ATP and ADP are released from stressed cells in states of inflammation, whereas adenosine serves as a key anti-inflammatory mediator. The ectonucleotidases CD39 and CD73 are responsible for the sequential catabolism of ATP to adenosine via AMP, thereby promoting an anti-inflammatory milieu induced by the “adenosine halo”. Great importance has been attributed to these enzymes in the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA) and as targets in cancer therapy. AMPD2 mediates AMP deamination to IMP, thus constituting an ambiguous mediator both enhancing the degradation of inflammatory ATP and reducing the formation of protective adenosine. Here, we postulate that this pathway is also present on the cell surface of immune cells and modified under inflammatory conditions. Therefore, we analysed surface AMPD2 expression and its modulation on distinct cell lines and primary immune cells.

Methods: Firstly, AMPD2 surface expression was verified by immunoprecipitation from membrane fractions isolated from cell lines (HEK293 and HMEC1) and CD14+ monocytes analysed by western blot and mass spectrometry. In addition, surface biotinylation of the aforementioned cells was performed. Also, AMPD2 surface expression was evaluated by flow cytometry, analysing both cell lines (HEK293, HMEC1, THP1, and Jurkat) and primary human immune cells from healthy donors and patients with RA. Secondly, co-expression of surface AMPD2, CD39 and CD73 on PBMCs was analysed by flow cytometry directly after isolation as well as after a 24h culture period. Moreover, surface expression was assessed after immunostimulation and Golgi transport inhibition.

Results: AMPD2 surface expression was confirmed by western blot and mass spectrometry of (i) precipitated AMPD2 from membrane fractions and (ii) biotinylated surface molecules in HEK293 and HMEC1 as well as CD14+ monocytes. Surface expression was reduced after AMPD2 knockdown in HEK293. Flow cytometric analysis further verified AMPD2 surface expression and revealed a significant decrease after Golgi transport inhibition (p< 0.01). TLR stimulation strongly enhanced the surface expression of AMPD2 and CD39 on monocytes (p< 0.05), whereas dexamethasone at high therapeutic doses inversely affected AMPD2 surface expression on lymphocytes and monocytes (p< 0.01). Analysis of AMPD2 surface expression on PBMCs from RA patients revealed higher expression levels compared to sex- and age-matched healthy controls (p< 0.05).

Conclusion: We demonstrate AMPD2 surface expression on immune cells for the first time. Hence, we reveal a novel regulator of the extracellular ATP-adenosine balance that is differentially expressed in RA patients compared to healthy controls. The extracellular conversion of AMP into IMP may constitute a shunt-like mechanism adding to the CD39-CD73 system controlling immunomodulation.


Disclosure: L. Ehlers, None; A. Kuppe, None; M. Kirchner, None; A. Damerau, None; C. Strehl, None; F. Buttgereit, AbbVie, 8, Eli Lilly, 8, Pfizer, 8, Roche, 8; T. Gaber, None.

To cite this abstract in AMA style:

Ehlers L, Kuppe A, Kirchner M, Damerau A, Strehl C, Buttgereit F, Gaber T. AMP Deaminase 2 Is Expressed on the Surface of Human Immune Cells as a Novel Regulator of Extracellular Adenosine Metabolism [abstract]. Arthritis Rheumatol. 2020; 72 (suppl 10). https://acrabstracts.org/abstract/amp-deaminase-2-is-expressed-on-the-surface-of-human-immune-cells-as-a-novel-regulator-of-extracellular-adenosine-metabolism/. Accessed .
  • Tweet
  • Email
  • Print

« Back to ACR Convergence 2020

ACR Meeting Abstracts - https://acrabstracts.org/abstract/amp-deaminase-2-is-expressed-on-the-surface-of-human-immune-cells-as-a-novel-regulator-of-extracellular-adenosine-metabolism/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology