ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 1936

A Neutrophil Degranulation Signature Identifies Proliferative Lupus Nephritis

Andrea Fava1, Jessica Li1, Daniel Goldman2, Brendan Antiochos1, Jose Monroy-Trujillo1, Derek Fine1, Mohamed G. Atta1, Jill Buyon3, Joel Guthridge4, Judith James4, Michelle Petri2 and Accelerating Medicines Partership (AMP) RA/SLE Network5, 1Johns Hopkins University, Baltimore, MD, 2Johns Hopkins University School of Medicine, Baltimore, MD, 3NYU School of Medicine, New York, NY, 4Oklahoma Medical Research Foundation, Oklahoma City, OK, 5Brigham and Women's Hospital, Everett, MA

Meeting: ACR Convergence 2021

Keywords: Biomarkers, Genomics and Proteomics, Lupus nephritis, neutrophils, Systemic lupus erythematosus (SLE)

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Date: Tuesday, November 9, 2021

Title: Abstracts: Genetics, Genomics & Proteomics (1935–1938)

Session Type: Abstract Session

Session Time: 4:15PM-4:30PM

Background/Purpose: The identification of intrarenal pathological processes is key to develop better diagnostic and treatment strategies in lupus nephritis (LN). But the direct comprehensive study of renal tissue can be limited by tissue degradation, availability, and cell survival. We employed urine proteomics to define the molecular pathways involved in proliferative LN

Methods: We quantified 1200 biomarkers (Kiloplex, RayBiotech) in urine samples collected on the day of (73%) or within 3 weeks (27%) of kidney biopsy in SLE patients with urine protein to creatinine ratio on random or 24 hr collection of > .5. Urine proteomic profiles were analyzed with respect to lupus nephritis histological features.

Results: A total of 195 patients were included: 138 (71%) had a proliferative histological class (III or IV +/- V), 57 (29%) pure membranous (V). There were 21 (FDR 1%) differentially abundant urinary proteins in proliferative compared to pure membranous LN (Figure 1A). These included several neutrophil granule proteins (Figure 1B) in addition to previously reported biomarkers such as IL-16 and CD163. Unsupervised clustering based on the proliferative LN signature identified 3 groups characterized by low, medium or high protein abundance (Figure 2). Higher proliferative signature abundance (right cluster) was associated with higher histological activity (NIH Activity Index). Immunofluorescence revealed an abundant MPO+ neutrophil infiltrate in proliferative LN (Figure 3).

Conclusion: Proliferative LN was associated with a urinary neutrophil degranulation signature, especially in patients with higher histological activity. Neutrophil activity could be non-invasively monitored to assist with the diagnosis of proliferative LN. These findings implicate neutrophils in LN activity and pathogenesis, nominate urinary neutrophil signatures as noninvasive biomarkers, and support the study of treatment targeted to neutrophils.

Figure 1. Urine proteomic profile of proliferative LN. (A) Volcano plot displaying the log fold change (FC) and adjusted p values of the differential abundance of 1200 urinary proteins. (B) Pathway enrichment analysis (Gene Ontology and Reactome) of the proteins enriched (FDR < 1%) in proliferative LN. Odds ratios based on the hypergeometric test are displayed.

Figure 2. Higher urinary neutrophil signature is associated with higher lupus nephritis activity. Heatmap of the urinary protein differentially abundant in proliferative LN. Hierarchical clustering based on protein abundance identified 3 groups. Proteinuria in mg protein/mg creatinine.

Figure 3. Neutrophil infiltrate in proliferative lupus nephritis. Immunofluorescence imaging of glomerular (A) and tubulointerstitial (B) neutrophil infiltration in a patient with class IV lupus nephritis. Myeloperoxydase (MPO) in green and DAPI in blue.


Disclosures: A. Fava, None; J. Li, None; D. Goldman, None; B. Antiochos, None; J. Monroy-Trujillo, None; D. Fine, None; M. Atta, None; J. Buyon, Bristol Myers Squibb, 1, GlaxoSmithKline, 2, Janssen, 2, Ventus, 2, Equillium, 2; J. Guthridge, None; J. James, Progentec Diagnostics, Inc., 2; M. Petri, Alexion, 1, Amgen, 1, Astrazeneca, 1, 5, Aurinia, 5, 6, Eli Lilly, 5, Emergent Biosolutions, 1, Exagen, 5, Gilead Biosciences, 2, GSK, 1, 5, IQVIA, 1, Idorsia Pharmaceuticals, 2, Janssen, 1, 5, Merck EMD Serono, 1, Momenta Pharmaceuticals, 2, PPD Development, 1, Sanofi, 2, Thermofisher, 5, UCB Pharmaceuticals, 2; A. (AMP) RA/SLE Network, None.

To cite this abstract in AMA style:

Fava A, Li J, Goldman D, Antiochos B, Monroy-Trujillo J, Fine D, Atta M, Buyon J, Guthridge J, James J, Petri M, (AMP) RA/SLE Network A. A Neutrophil Degranulation Signature Identifies Proliferative Lupus Nephritis [abstract]. Arthritis Rheumatol. 2021; 73 (suppl 9). https://acrabstracts.org/abstract/a-neutrophil-degranulation-signature-identifies-proliferative-lupus-nephritis/. Accessed .
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to ACR Convergence 2021

ACR Meeting Abstracts - https://acrabstracts.org/abstract/a-neutrophil-degranulation-signature-identifies-proliferative-lupus-nephritis/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology