ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 1034

Therapeutic Potential of Targeting Sialic Acid Modified Receptors in Osteoarthritis

Maria Dolores Mayan1,2, Paula Carpintero-Fernández1, Raquel Gago-Fuentes1, Marta Varela-Eirin1, Gary S. Goldberg3 and Francisco Javier Blanco1,4,5, 1Cartilage Biology Research Group, Rheumatology Division, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain, 2Email: [email protected], A Coruña, Spain, 3Rowan University, Department of Molecular Biology, School of Osteopathic Medicine, Stratford, NJ, 4Rheumatology Division, CIBER-BBN/ISCIII, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain, 5Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain

Meeting: 2014 ACR/ARHP Annual Meeting

Keywords: cartilage, Cell Signaling, inflammatory arthritis and osteoarthritis

  • Tweet
  • Email
  • Print
Session Information

Title: Cytokines, Mediators, Cell-cell Adhesion, Cell Trafficking and Angiogenesis

Session Type: Abstract Submissions (ACR)

Background/Purpose: Glycosylated proteins are essential components of the extracellular matrix (ECM) of cartilage and contribute to the maintenance of its function. A shift from a-2,6- to a-2,3-linked sialic acids of glycoproteins modifies the binding ability of proteins to substrates influencing cellular anchoring and affecting signal transduction. Intriguingly, the predominance of a-2,3-sialylation of chondrocytes glycoproteins was associated with the pathophysiology of rheumatic diseases including rheumatoid arthritis (RA) and osteoarthritis (OA). A highly O-glycolysated protein with α-2,3-sialic acid, involved in the induction of inflammation and tissue repair, is the transmembrane mucin receptor named Podoplanin (PDPN). The present study aimed to assess the effect of specifically targets a-2-3-sialic acid residues with a lectin-based drug (MASL) on chodrocyte dedifferentiation and cartilage breakdown processes.

Methods: For immunofluorescence and immunohistochemistry assays, in situ cartilage was fixed and frozen immediately using Tissue-Tek O.C.T. and isopentanol in liquid nitrogen.  Primary cells in monolayer culture were fixed with formaldehyde for optical microscopy assays. 4mm cartilage punches were prepared from cartilage explants that were cut in the operating room immediately after surgery and cultured in DMEM with 0.1% FCS. Chondrocytes were isolated from articular cartilage and cultured in DMEM with 15% FCS. Cell viability was evaluated by the colorimetric MTT assay. Cell adhesion and grown was assess with fibrinogen-coated well plates and Wound Healing Assay Kit. Reactive oxygen species levels were measured by DCFH-DA and by Flow Cytometry. RNA was isolated with TRIZOL® Reagent and analyzed by Real-Time RT-PCR.

Results: The treatment of chondrocytes with 400 and 720 nM of MASL did not affect cell viability, adhesion or growth. To mimic pathological conditions, cells and cartilage explants were treated with 5 µg/ml oligomycin. Treatment of chondrocytes with oligomycin did not affect cell viability but increased ROS levels over 10 fold and MMP3, IL-6 and COX2 mRNA levels over 3-10 folds. The treatment of cells with MASL effectively protected chondrocytes from ROS production when incubated in the presence of oligomycin. Moreover, oligomycin induced the expression of inflammatory cytokines including IL-6 and COX2, and this induction was reverted by treatment with nanomolar concentrations of MASL. 5 µg/ml of oligomycin for 7 days decreased safranin uptake and disrupted the ECM structure of cartilage punches as evidenced by ulceration increasing lacunae space. However, the presence of 400 nM of MASL prevented the cartilage destruction and inhibited COX2 and MMP3 induction by oligomycin treatment. Immunohistochemistry assays revealed that OA cartilage contained significantly higher levels of PDPN protein in comparison with cartilage from healthy donors.

Conclusion: This study demonstrates that physiologically relevant concentrations of MASL protect chondrocytes from detrimental effects of ROS, inflammatory cytokines and MMPs and preserve chondrocyte phenotype and articular cartilage structure under pathological conditions.


Disclosure:

M. D. Mayan,
None;

P. Carpintero-Fernández,
None;

R. Gago-Fuentes,
None;

M. Varela-Eirin,
None;

G. S. Goldberg,
None;

F. J. Blanco,
None.

  • Tweet
  • Email
  • Print

« Back to 2014 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/therapeutic-potential-of-targeting-sialic-acid-modified-receptors-in-osteoarthritis/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology