ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 2073

Mitochondrial ROS Is a Novel Regulator of Sting-Mediated Type I IFN Production By Governing Extrusion of Oxidized Mitochondrial DNA upon Neutrophil Extracellular Trap Formation.

Christian Lood1, Luz P. Blanco2, Monica Purmalek3, Carolyne K. Smith3, Carmelo Carmona-Rivera3, Jeffrey Ledbetter4, Mariana J. Kaplan2 and Keith B. Elkon5, 1Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, 2Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 3Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 4University of Washington, Seattle, WA, 5Division of Rheumatology, University of Washington, Seattle, WA

Meeting: 2015 ACR/ARHP Annual Meeting

Date of first publication: September 29, 2015

Keywords: interferons, Mitochondria, Neutrophil Extracellular Traps, neutrophils and systemic lupus erythematosus (SLE)

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Date: Monday, November 9, 2015

Title: Systemic Lupus Erythematosus - Human Etiology and Pathogenesis: Modulators of Disease

Session Type: ACR Concurrent Abstract Session

Session Time: 2:30PM-4:00PM

Background/Purpose: Neutrophil extracellular trap generation (NETosis) is a reactive oxygen species (ROS)-dependent cell death pathway implicated in autoimmune disorders such as systemic lupus erythematosus (SLE). However, since deficiencies in NADPH oxidase-mediated ROS production is associated with increased, rather than reduced, autoimmunity, this association has been challenged. Since mitochondria are major generators of ROS, we asked the following questions: i) is mitochondrial ROS required for NET formation? ii) what is the relative contribution and oxidative status of mitochondrial DNA in NETs? and iii) what are the immune stimulatory effects of mitochondrial products following RNP immune complex (IC) activation of neutrophils?

Methods: Mitochondrial ROS was quantified by the fluorescent dye MitoSOX. Diphenyleneiodonium (DPI), thenoyltrifluoroacetone (TTFA), rotenone and mitoTEMPO were used as ROS inhibitors. NET formation was quantified by fluorimetry and the extent of DNA oxidation determined using anti-8-oxo-2′-deoxyguanosine (8-OHdG) antibodies by ELISA or immunofluorescence (IF) microscopy. Immunoprecipitation and qPCR (16/18S ratio) were used to assess the origin and properties of NET DNA. To evaluate the inflammatory potential of mitochondrial DNA (mitDNA), oxidized or non-oxidized NET DNA was transfected into THP1 cells or injected into wild type or STING deficient mice.

Results: Following exposure of neutrophils to RNP IC, mitochondria became hypopolarized and translocated to the cell surface. The IC also stimulated mitochondria to produce ROS at levels similar to PMA stimulation. Mitochondrial ROS proved to be necessary for maximal NETosis since the selective inhibitors of mitochondrial ROS, TTFA and MitoTEMPO reduced NETosis by ~50% (p<0.0001, n=8). Furthermore, mitochondrial ROS stimulated by IC caused oxidation of DNA and IF revealed that DNA oxidation occurred predominantly in mitochondrial, rather than chromosomal, DNA. Using a dual immunoprecipitation and qPCR technique, we observed that the oxidized NET DNA displayed a high 16S/18S ratio, demonstrating that it was markedly enriched in mitDNA as compared to non-oxidized NET DNA (p<0.01, n=9). The oxidation of mitDNA was almost completely reversed in the presence of TTFA (p<0.01). When the inflammatory properties of oxidized mitDNA and non-oxidized DNA were compared in vitro, oxidized DNA was much more potent in inducing IL-6 and type I IFNs (p<0.001). Significantly, when oxidized mitDNA was injected into wild type and STING deficient mice,  we observed that the oxidized mitDNA stimulated type I IFNs through a pathway that required the DNA sensor, STING (p<0.001).

Conclusion: Mitochondria play an important, previously unappreciated role in immune-mediated NETosis. Not only do they contribute to ROS that promotes NETosis but, also, oxidized mitDNA generated during NETosis has potent inflammatory properties in vitro and in vivo – including stimulation of type I IFN responses mediated through the STING pathway. We suggest that mitochondrial ROS and release of oxidized mitDNA may be instrumental in initiating or perpetuating autoimmunity and type I IFN signature seen in SLE patients.


Disclosure: C. Lood, None; L. P. Blanco, None; M. Purmalek, None; C. K. Smith, None; C. Carmona-Rivera, None; J. Ledbetter, None; M. J. Kaplan, None; K. B. Elkon, None.

To cite this abstract in AMA style:

Lood C, Blanco LP, Purmalek M, Smith CK, Carmona-Rivera C, Ledbetter J, Kaplan MJ, Elkon KB. Mitochondrial ROS Is a Novel Regulator of Sting-Mediated Type I IFN Production By Governing Extrusion of Oxidized Mitochondrial DNA upon Neutrophil Extracellular Trap Formation. [abstract]. Arthritis Rheumatol. 2015; 67 (suppl 10). https://acrabstracts.org/abstract/mitochondrial-ros-is-a-novel-regulator-of-sting-mediated-type-i-ifn-production-by-governing-extrusion-of-oxidized-mitochondrial-dna-upon-neutrophil-extracellular-trap-formation/. Accessed .
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2015 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/mitochondrial-ros-is-a-novel-regulator-of-sting-mediated-type-i-ifn-production-by-governing-extrusion-of-oxidized-mitochondrial-dna-upon-neutrophil-extracellular-trap-formation/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology