ACR Meeting Abstracts

ACR Meeting Abstracts

  • Home
  • Meetings Archive
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018 ACR/ARHP Annual Meeting
    • 2017-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • Meeting Resource Center

Abstract Number: 1118

Identification of Transcriptional Regulatory Networks in Systemic Sclerosis

Yue Wang1, Jennifer Franks2 and Michael L. Whitfield3, 1Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 2Geisel School of Medicine at Dartmouth, Hanover, NH, 3Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH

Meeting: 2018 ACR/ARHP Annual Meeting

Keywords: Bioinformatics, Gene Expression, Lung Disease, systemic sclerosis and transcription factor

  • Tweet
  • Email
  • Print
Session Information

Date: Monday, October 22, 2018

Session Title: Systemic Sclerosis and Related Disorders – Basic Science Poster II

Session Type: ACR Poster Session B

Session Time: 9:00AM-11:00AM

Background/Purpose:

Systemic sclerosis (SSc) is a heterogeneous autoimmune disorder with poor outcomes and no FDA-approved therapies. Prior work has shown gene expression patterns associated with inflammation and innate immune system activation in multiple affected organ systems. Networks of activating transcription factors (TF) and miRNAs that underlie SSc molecular subsets and clinical co-variates have not been characterized in detail. We analyzed transcriptional regulatory networks underlying the inflammatory intrinsic gene expression subset of SSc and associated clinical covariates. 

Methods:

Gene expression profiles were downloaded from Milano et al (GSE9285; 75 samples), Pendergrass et al (GSE32413; 89 samples), Hinchcliff et al (GSE59787; 165 samples) and Assassi et al (GSE58095; 102 samples). In total 431 samples from 244 patients were analyzed. The C3 target gene set (836 regulators) was downloaded from the MSigDB. Gene expression and target gene profiles were integrated using the BASE algorithm to calculate sample-specific regulator activity scores. TF activity scores were positively correlated and miRNAs activity scores were negatively correlated with gene expression. Correlations were calculated between activity scores and samples MRSS. Regulators were selected from those that had correlations greater than 0.15 or lesser than -0.15 in at least 3 cohorts. A transcriptional interaction network was created by Cytoscape.

Results:

We identified 60 regulators whose activity scores were consistently, positively correlated with MRSS in inflammatory patients in all datasets. Examples include core binding factors, innate immune-related pathways, and telomere maintenance (NFAT, NFKB, STAT3, TEL2; Fig. 1A). We also found that using the activities of NFKB and TEL2, inflammatory samples were clustered into 4 subtypes (Fig. 1B). ÔDouble highÕ samples in group 1 had much worse skin disease (Fig. 1C, P=0.00003) with a longer disease duration (Fig. 1D, P=0.05) compared to other samples. Group 1 samples tended to have worse pulmonary hypertension (Fig. 1E, P=0.004) and were less likely to have pulmonary fibrosis (Fig. 1F, P=0.05) than the remainder of samples. Lastly, a regulator interaction network was created to provide novel insights for SSc and visualize the connectivity between different components of the regulator network. 

 

Conclusion:

We have identified a subtype of samples classified as the inflammatory gene expression subset that show increased expression of innate immune pathways NFAT, NFKB and STAT3. Patients with high expression of two of these pathways, which we have termed Ôdouble highÕ, had evidence of increased disease severity. This further highlights the role of innate immune transcriptional activators in SSc pathogenesis. The framework can be easily applied to any samples with molecular gene expression data to develop transcriptional activity networks. 

../../../../Desktop/Figure1.jp

 


Disclosure: Y. Wang, None; J. Franks, None; M. L. Whitfield, Celdara LLC, 4.

To cite this abstract in AMA style:

Wang Y, Franks J, Whitfield ML. Identification of Transcriptional Regulatory Networks in Systemic Sclerosis [abstract]. Arthritis Rheumatol. 2018; 70 (suppl 9). https://acrabstracts.org/abstract/identification-of-transcriptional-regulatory-networks-in-systemic-sclerosis/. Accessed February 3, 2023.
  • Tweet
  • Email
  • Print

« Back to 2018 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/identification-of-transcriptional-regulatory-networks-in-systemic-sclerosis/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

ACR Pediatric Rheumatology Symposium 2020

© COPYRIGHT 2023 AMERICAN COLLEGE OF RHEUMATOLOGY

Wiley

  • Home
  • Meetings Archive
  • Advanced Search
  • Meeting Resource Center
  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences