ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 134

Exploration of T-Cell Signatures Following TCR Stimulation Using Single Cell RNA-Seq to Inform Treatment Response Studies in Rheumatoid Arthritis

Paul Martin1, James Ding1, Ben Mulhearn1, Sebastien Viatte1 and Stephen Eyre1,2, 1Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom, 2NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom

Meeting: 2018 ACR/ARHP Annual Meeting

Keywords: rheumatoid arthritis (RA) and treatment, RNA, T cells

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Date: Sunday, October 21, 2018

Title: T Cell Biology and Targets in Autoimmune and Inflammatory Disease Poster

Session Type: ACR Poster Session A

Session Time: 9:00AM-11:00AM

Background/Purpose: For rheumatoid arthritis (RA), as with many other rheumatic diseases, the importance of determining which therapy will work best, early in disease, to prevent further progression, is an important area of research. Progress in treatment response has been limited, possibly due to the complex interplay between various cell types. As such, specific T-cell signatures, determined by single cell RNA-Seq (scRNA-Seq), could be predictive of future response to treatments such as anti-TNF biologic therapies. Our aim was therefore to determine the optimal study design and to assess the potential of scRNA-Seq to identify T-cell signatures under resting and stimulated conditions to inform future studies.

Methods: Primary CD4+ T-cells were either stimulated using anti-CD3/CD28 beads or subjected to the same conditions without stimulation for 4 hours. Single cells were isolated using the 10X Genomics Chromium Controller with a target recovery of 6000 cells. Each scRNA-Seq library was sequenced on 4 Illumina HiSeq 4000 lanes (~200K reads/cell) and processed using the cellranger pipeline. Further quality control and cluster analysis was performed using Seurat.

Results: For the unstimulated sample 5,586 cells were recovered and after quality control and filtering, 5,387 cells remained. Similarly, for the stimulated sample, 4,621 cells were recovered and 4,473 remained. This resulted in an average of 1,094 and 1,456 genes per cell. Similar clusters were seen after downsampling the stimulated dataset to 1 lane (~379M reads, ~82K reads/cell), suggesting that CD4+ T-cells are defined by large gene expression changes rather than subtle variations, consistent with protein expression data. Cluster exploration allowed the identification of several typical CD4+ T-cell populations, including naïve, helper and regulatory. Furthermore, alignment of the two conditions in Seurat, identified classical and non-classical markers of activation, such as CD69, CCR7, MYC and PIM3. Finally, the relative cluster location and the expression of indicative markers suggested evidence of a progression from a naïve cell state to an ‘active’ effector state.

Conclusion: This data has provided important insights into future study design and confirmed the potential of scRNA-Seq to identify T-cell signatures. Importantly, despite obvious expression changes, cluster identity was maintained between stimulatory conditions. This implies it is possible to directly compare scRNA-Seq expression profiles between patient samples showing different disease activity without confounding the conclusions and enable the use of scRNA-Seq to investigate its predictive potential in RA treatment response. We are therefore in the process of expanding this work to study patient samples and different cell types. For example we have already generated similar data for monocytes on 3 RA samples and 3 healthy samples.


Disclosure: P. Martin, None; J. Ding, None; B. Mulhearn, None; S. Viatte, None; S. Eyre, None.

To cite this abstract in AMA style:

Martin P, Ding J, Mulhearn B, Viatte S, Eyre S. Exploration of T-Cell Signatures Following TCR Stimulation Using Single Cell RNA-Seq to Inform Treatment Response Studies in Rheumatoid Arthritis [abstract]. Arthritis Rheumatol. 2018; 70 (suppl 9). https://acrabstracts.org/abstract/exploration-of-t-cell-signatures-following-tcr-stimulation-using-single-cell-rna-seq-to-inform-treatment-response-studies-in-rheumatoid-arthritis/. Accessed .
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2018 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/exploration-of-t-cell-signatures-following-tcr-stimulation-using-single-cell-rna-seq-to-inform-treatment-response-studies-in-rheumatoid-arthritis/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology