ACR Meeting Abstracts

ACR Meeting Abstracts

  • Home
  • Meetings Archive
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018 ACR/ARHP Annual Meeting
    • 2017 ACR/ARHP Annual Meeting
    • 2017 ACR/ARHP PRSYM
    • 2016-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • Meeting Resource Center

Abstract Number: 154

Epigenetic Editing of FOXP3 in Human T Cells Is Sufficient to Induce Overexpression and Create a Regulatory T Cell Phenotype in Vitro

Christopher Dunn1, Cassandra Velasco1, Madison Andrews2, Alexander Rivas3 and Matlock A. Jeffries4, 1Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 2Oklahoma Medical Research Foundation, Oklahoma City, OK, 3University of Arkansas for Medical Sciences, Little Rock, AR, 4Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK

Meeting: 2018 ACR/ARHP Annual Meeting

Keywords: DNA Methylation, Gene Expression, T-Regulatory Cells and epigenetics

  • Tweet
  • Email
  • Print
Session Information

Date: Sunday, October 21, 2018

Session Title: T Cell Biology and Targets in Autoimmune and Inflammatory Disease Poster

Session Type: ACR Poster Session A

Session Time: 9:00AM-11:00AM

Background/Purpose: Defects in the number and function of naturally-occurring regulatory T cells (Tregs) have been identified in a variety of autoimmune diseases. The development of Tregs is marked by a variety of epigenetic modifications, most closely associated with demethylation of the FOXP3 gene. Transfection of T cells with FOXP3 transgenes has resulted in conversion to a Treg phenotype; however, the effects on cellular function of direct epigenetic editing of FOXP3 has not yet been evaluated.

Methods: Guide RNA (gRNA) sequences targeting the human FOXP3 promoter, TSDR, and CNS1 region were designed. An epigenetic editing SUNTAG (dCas9 + TET1) construct was used to demethylate genomic regions. Constructs containing dCas9 + TET1 + guide RNA sequences + fluorescent reporter were transfected by electroporation into Jurkat cells and cultured for 24 hours, then enriched by flow sorting. FOXP3 and CTLA4 gene expression was determined by qPCR and FOXP3-TSDR DNA methylation quantified by bisulfite pyrosequencing 3 days after transfection. Primary CD4+ T cells were isolated from human peripheral blood, stained with CellTrace reagent and combined with FOXP3 epigenetically-edited Jurkat cells in a 1:1 ratio and stimulated with anti-CD3/anti-CD28 beads and 30U/mL rhIL-2 for 5 days. Suppression of T cell division was determined by flow cytometry.

Results: Epigenetic editing constructs targeting the FOXP3 TSDR reduced DNA methylation (TSDR region, transfected: 55%±2 mean±SEM vs. vehicle: 91±3, p=8E-5) (Figure 1), whereas constructs targeting the promoter and CNS1 did not reduce TSDR methylation. All gRNAs increased FOXP3 expression (TSDR-targeted vehicle: 0.7±0.2, dC9-TET1+TSDR gRNA 230±10 relative units vs. GAPDH, p<0.0001) (promoter-targeted: vehicle: 0.7±0.2, dC9-TET1+Prom. gRNA 120±20, p=0.02), (CNS1-targeted vehicle: 0.7±0.2, dC9-TET1 +CNS2 gRNA 59±10, p=0.001) (Figure 1). Furthermore, epigenetic editing of FOXP3 resulted in increased expression of the Treg-related gene CTLA4 (FOXP3 prom.-targeted non-significant, dC9-TET1+FOXP3 TSDR gRNA 6.4±0.6 vs. vehicle: 1.6±0.4, p=0.003; dC9-TET1+FOXP3+CNS1 gRNA: 3.9±5 vs. vehicle: 0.8±0.3, p=0.009). Epigenetically edited cells resulted in suppression of naïve T-cell proliferation by 20-30% (dC9+TET1+prom. gRNA=29% avg. suppression, p=2E-5, dC9+TET1+TSDR gRNA=20% avg. suppression, p=0.008, dC9+TET1+CNS1 gRNA=28% avg. suppression, p=3E-5, all vs. dC9+TET1-gRNA) (Figure 1).

Conclusion: Epigenetic editing of FOXP3 using a dCas9-TET1 construct induces DNA demethylation, overexpression, and a regulatory T cell phenotype. Our data are intriguing but need confirmation, particularly to clarify the persistence of induced DNA methylation changes and resistance to phenotype switching. If confirmed, this approach has the potential to significantly improve upon current methods of T-reg generation.


Disclosure: C. Dunn, None; C. Velasco, None; M. Andrews, None; A. Rivas, None; M. A. Jeffries, None.

To cite this abstract in AMA style:

Dunn C, Velasco C, Andrews M, Rivas A, Jeffries MA. Epigenetic Editing of FOXP3 in Human T Cells Is Sufficient to Induce Overexpression and Create a Regulatory T Cell Phenotype in Vitro [abstract]. Arthritis Rheumatol. 2018; 70 (suppl 10). https://acrabstracts.org/abstract/epigenetic-editing-of-foxp3-in-human-t-cells-is-sufficient-to-induce-overexpression-and-create-a-regulatory-t-cell-phenotype-in-vitro/. Accessed May 19, 2022.
  • Tweet
  • Email
  • Print

« Back to 2018 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/epigenetic-editing-of-foxp3-in-human-t-cells-is-sufficient-to-induce-overexpression-and-create-a-regulatory-t-cell-phenotype-in-vitro/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

ACR Pediatric Rheumatology Symposium 2020

© COPYRIGHT 2022 AMERICAN COLLEGE OF RHEUMATOLOGY

Wiley

  • Home
  • Meetings Archive
  • Advanced Search
  • Meeting Resource Center
  • Online Journal
  • Privacy Policy
  • Permissions Policies
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.