ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 1936

Bimekizumab Blocks T Cell-Mediated Osteogenic Differentiation of Periosteal Stem Cells: Coupling Pathological Bone Formation to IL-17A and IL-17F Signaling

Mittal Shah1,2, Ash Maroof1, Rawiya Al-Hosni2, Panagiotis Gikas3, Neil Gozzard1, Stevan Shaw1 and Scott Roberts1,2, 1UCB Pharma, Slough, United Kingdom, 2University College London, London, United Kingdom, 3The Royal National Orthopaedic Hospital, London, United Kingdom

Meeting: 2017 ACR/ARHP Annual Meeting

Date of first publication: September 18, 2017

Keywords: bone biology, cytokines, interleukins (IL), monoclonal antibodies and spondylarthritis

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Date: Tuesday, November 7, 2017

Title: Biology and Pathology of Bone and Joint Poster II

Session Type: ACR Poster Session C

Session Time: 9:00AM-11:00AM

Background/Purpose: Structural tissue damage, as a result of pathological bone formation, is a major cause of disability in spondyloarthritis (SpA). A paucity of in vitro models that faithfully replicate human skeletal biology has impeded research into the cellular and molecular triggers for this osteoimmunologic phenomenon. Nevertheless, clinical and animal studies have defined IL-17 signaling as a key regulator of SpA disease; however, the role of IL-17 in bone pathology is poorly understood. IL-17-producing γδ-T cells have a critical function in periosteal bone formation for fracture repair,1 the periosteum has also been implicated in pathological bone formation in SpA disease progression.2 This study aimed to investigate IL-17 signaling in the context of pathological bone formation using a biomimetic human periosteum derived stem cell (hPDSC) model of osteogenic differentiation.

Methods: hPDSCs were obtained through enzymatic digestion of periosteal biopsies from patients undergoing orthopedic surgery. Expanded cultures were treated with recombinant human IL-17A, IL-17F, or both over 96h and expression of gene markers evaluated. hPDSCs were also stimulated using a biomimetic protocol in combination with IL‑17A and IL‑17F, or human Th17 and γδ-T-cell supernatants (SNs) (as a surrogate disease-like inflammatory milieu). Antibodies with strong-affinity to IL-17A, IL‑17F, or bimekizumab (a humanized monoclonal IgG1 antibody with strong affinity for both IL-17A and IL-17F) were used to define the role of these cytokines in the SNs. Expression of osteogenic markers and matrix mineralization was assessed to define in vitro bone formation.

Results: Under basal conditions IL-17A and IL-17F significantly up-regulated IL-6 expression and transiently enhanced the expression of the osteogenic transcription factor RUNX-2. When IL-17 cytokines were combined in a biomimetic protocol, both IL-17A and IL-17F promoted osteogenic differentiation. Following 9 days’ exposure, IL-17F enhanced the expression of most osteogenic markers to a greater extent than IL-17A alone. Conversely, IL-17A treatment resulted in elevated in vitro mineralization vs IL-17F. The SNs potently enhanced hPDSC osteogenic differentiation and mineralization. While IL-6 expression and in vitro bone formation were blocked by neutralization of IL-17A or IL-17F individually, dual neutralization with bimekizumab exhibited the greatest effect on most of the tested parameters.

Conclusion: These data show that both IL-17A and IL-17F enhance in vitro osteogenic differentiation and bone formation from hPDSCs. The source of these cytokines has not been established but may, for example, involve entheseal resident γδ-T cells. We propose that IL‑17A and IL-17F drive pathological bone formation resulting in enthesophytes at the enthesis/periosteum interface. Current therapeutics display limited efficacy in blocking enthesophyte formation, hence inhibition of both IL-17A and IL-17F with bimekizumab offers an attractive therapeutic strategy to prevent this debilitating feature of SpA.

References:

1Ono, et al. Nat Commun 2016;7:10928; 2Lories, et al. Arthritis Res Ther 2009;11:221


Disclosure: M. Shah, UCB Pharma, 3,UCB Pharma, 2; A. Maroof, UCB Pharma, 3,UCB Pharma, 9; R. Al-Hosni, None; P. Gikas, None; N. Gozzard, UCB Pharma, 3; S. Shaw, UCB Pharma, 3,UCB Pharma, 9; S. Roberts, UCB Pharma, 3.

To cite this abstract in AMA style:

Shah M, Maroof A, Al-Hosni R, Gikas P, Gozzard N, Shaw S, Roberts S. Bimekizumab Blocks T Cell-Mediated Osteogenic Differentiation of Periosteal Stem Cells: Coupling Pathological Bone Formation to IL-17A and IL-17F Signaling [abstract]. Arthritis Rheumatol. 2017; 69 (suppl 10). https://acrabstracts.org/abstract/bimekizumab-blocks-t-cell-mediated-osteogenic-differentiation-of-periosteal-stem-cells-coupling-pathological-bone-formation-to-il-17a-and-il-17f-signaling/. Accessed .
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2017 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/bimekizumab-blocks-t-cell-mediated-osteogenic-differentiation-of-periosteal-stem-cells-coupling-pathological-bone-formation-to-il-17a-and-il-17f-signaling/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology