ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 2267

AMP-Activated Protein Kinase: A  Target for Methotrexate in Macrophages

Cornelia Cudrici1, Martin Pelletier2 and Richard M. Siegel3, 1NIAMS, Immunoregulation Section, Autoimmunity Branch, Bethesda, MD, 2Infectious and immune diseases Centre Hospitalier de l'Université Laval (CHUL) Québec, Québec, QC, Canada, 3National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD

Meeting: 2016 ACR/ARHP Annual Meeting

Date of first publication: September 28, 2016

Keywords: Macrophage, methotrexate (MTX) and rheumatic disease

  • Tweet
  • Email
  • Print
Session Information

Date: Tuesday, November 15, 2016

Title: Innate Immunity and Rheumatic Disease - Poster II

Session Type: ACR Poster Session C

Session Time: 9:00AM-11:00AM

Background/Purpose: Methotrexate (MTX) remains a cornerstone of treatment in multiple forms of inflammatory arthritis, lupus and vasculitis. The anti-inflammatory effects of MTX are more likely to result from an increase in intracellular and extracellular adenosine concentration, which are produced after inhibition of the enzyme AICAR transformylase by MTX, which converts the nucleotide analog AICAR (5-aminoimidazole-4-carboxamide ribonucleotide), also known as ZMP to formyl-AICAR, resulting in the accumulation of this metabolite. Another function of AICAR is the activation of the AMP-dependent kinase (AMPK). AMPK is a highly conserved trimeric protein kinase complex that exists in essentially all eukary­otic cells and is a crucial cellular energy sensor. In mammals, AMPK is activated by an increasing cellular ADP/ATP ratio secondary to metabolic stress (glucose deprivation, hypoxia, and ischemia) or accelerate ATP consumption. Once activated by decreased intracellular energy status, AMPK will promote ATP production by switching on catabolic and turning off anabolic biosynthetic pathways. We hypothesize that AMPK activation mediates a major portion of the anti-inflammatory effects of MTX and that this may account for the efficacy of MTX in rheumatic diseases. A better understanding of the molecular targets of methotrexate may allow the development of novel anti-inflammatory drugs.

Methods: We investigated the role of the anti-inflammatory effect of methotrexate via AMPK in human monocytes-derived macrophages (MDM) and mouse bone marrow-derived macrophages (BMDM) along with AICAR and A769662 (well knows as AMPK activators) and compound C, a selective ATP-competitive inhibitor of AMPK. AMPK phosphorylation and total AMPK were measured by Western blotting. Cells were then stimulated with LPS or TNF-α, and production of pro-inflammatory cytokines were measured in the supernatant using a Luminex multiplex assay technique. We also generated AMPKα1 deficient macrophages in order to test if these are resistant to the anti-inflammatory effects of MTX.

Results: MTX induced AMPK phosphorylation in a time and dose-dependent manner, with effects comparable to the synthetic AMPK activator A769662 and AICAR both in hMDM and BMDM. MTX-induced AMPK activation was associated with a reduction in the production of pro-inflammatory cytokines (IL-6, IL-1 β, and TNF-α) in response to LPS and TNF stimulation. Compound C is able to partially reverse the effects of MTX on LPS and TNF -induced cytokine production, suggesting that AMPK activation is responsible for these anti-inflammatory effects. Folic acid is not able to revert the MTX activation of AMPK in hMDM and BMDM.

Conclusion: Methotrexate is able to induce AMPK activation in both human and mouse macrophages, and suppress pro-inflammatory cytokines in a manner dependent on AMPK activity. These results have been confirmed genetically in macrophages deficient in AMPK subunits and models of chronic inflammation and diseases such as serum transfer arthritis. Our findings raise the possibility that some anti-inflammatory effects of MTX are mediated by AMPK, suggest that AMPK may be a target for the action of current ‘antimetabolite’ anti-inflammatory agents and a target for the development of new anti-inflammatory drugs.


Disclosure: C. Cudrici, None; M. Pelletier, None; R. M. Siegel, None.

To cite this abstract in AMA style:

Cudrici C, Pelletier M, Siegel RM. AMP-Activated Protein Kinase: A  Target for Methotrexate in Macrophages [abstract]. Arthritis Rheumatol. 2016; 68 (suppl 10). https://acrabstracts.org/abstract/amp-activated-protein-kinase-a-target-for-methotrexate-in-macrophages/. Accessed .
  • Tweet
  • Email
  • Print

« Back to 2016 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/amp-activated-protein-kinase-a-target-for-methotrexate-in-macrophages/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology