ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 983

A MAPK Activated Kinase 2 Inhibitor Attenuates Inflammatory and Destructive Arthritis in Human Ex Vivo Models

Tue Wenzel Kragstrup1,2, Anders Mellemkjær3, Morten Aagaard Nielsen4, Line Dam Heftdal2, Marie Iversen3, Peter Schafer5 and Bent Deleuran2, 1Randers Regional Hospital, Randers, Denmark, 2Department of Biomedicine, Aarhus University, Aarhus, Denmark, 3Aarhus University, Aarhus, Denmark, 4Of Biomedicine, Aarhus University, Aarhus, Denmark, 5Celgene Corporation, Summit, NJ

Meeting: 2018 ACR/ARHP Annual Meeting

Keywords: Arthritis, chemokines, cytokines, inflammation and signal transduction

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Date: Monday, October 22, 2018

Title: Cytokines and Cell Trafficking Poster

Session Type: ACR Poster Session B

Session Time: 9:00AM-11:00AM

Background/Purpose: Targeting intracellular pathways with oral small molecules is an attractive therapeutic approach for treating immune mediated inflammatory diseases. The mitogen-activated protein kinase (MAPK) pathway is activated by environmental stressors, growth factors and inflammatory cytokines. However, the inhibition of central MAPK proteins has so far had undesirable side effects. The MAPK-activated protein kinase 2 (MK2) is a downstream mediator in the MAPK signaling pathway and could therefore be inhibited without the same side effects. The objective of this study was to study the effects of a small molecule inhibiting MK2 on inflammation and structural changes in ex vivo models of immune mediated inflammatory arthritis.

Methods: Synovial fluid mononuclear cells (SFMCs), fibroblast like synovial cells (FLSs) and peripheral blood mononuclear cells (PBMCs) were obtained from a study population consisting of patients with active RA or peripheral SpA with at least one swollen joint (for obtaining synovial fluid) (n=14). SFMCs were cultured for 48 hours with and without addition of a MK2 inhibitor (Celgene) at 1000 nM, 333 nM and 111 nM and supernatants were analyzed by the Olink proseek multiplex interferon panel and commercially available ELISA assays. Because FLSs are only found in small amounts among SFMCs, autologous co-cultures of FLS and PBMCs and SFMCs were also used. SFMCs cultured for 21 days were used to study inflammatory macrophage differentiation and osteoclastogenesis.

Results: In SFMCs cultured for 48 hours, the MK2 inhibitor decreased the production of CXCL9 (P<0.001), CXCL10 (P<0.01), HGF (P<0.01), CXCL11 (P<0.01), TWEAK (P<0.05), and IL-12B (P<0.05) and increased the production of CXCL5 (P<0.0001), CXCL1 (P<0.0001), CXCL6 (P<0.001), TGFα (P=0.01), MCP-3 (P<0.01), LAP TGFβ (P<0.05) dose-dependently after Bonferroni correction (all corrected P values). At the highest concentration, the MK2 inhibitor also decreased MCP-1 production (P<0.05). In FLS-SFMC co-cultures, the MK2 inhibitor decreased MCP-1 production (P<0.05) but did not change the production of DKK1 and MMP3. In FLS-PBMC co-cultures, the MK2 inhibitor decreased the production of MCP-1 (P<0.0001), increased MMP3 production (P<0.05) but did not change DKK1 production. In SFMCs cultured for 21 days as a model of inflammatory macrophage differentiation and osteoclastogenesis, the MK2 inhibitor decreased the production of MCP-1 (P<0.05) and tartrate-resistant acid phosphatase (TRAP) (P<0.05) but did not change the production of IL-10.

Conclusion: This study reveals the effects of a MK2 inhibitor in ex vivo models of immune mediated inflammatory arthritis. The MK2 inhibitor changed the secretory profile of SFMCs and decreased inflammatory osteoclastogenesis. Taken together, this points to a role of this MK2 inhibitor in attenuating inflammatory and destructive arthritis.


Disclosure: T. W. Kragstrup, None; A. Mellemkjær, None; M. A. Nielsen, None; L. D. Heftdal, None; M. Iversen, None; P. Schafer, Investigational drug candidate, 1, 3; B. Deleuran, None.

To cite this abstract in AMA style:

Kragstrup TW, Mellemkjær A, Nielsen MA, Heftdal LD, Iversen M, Schafer P, Deleuran B. A MAPK Activated Kinase 2 Inhibitor Attenuates Inflammatory and Destructive Arthritis in Human Ex Vivo Models [abstract]. Arthritis Rheumatol. 2018; 70 (suppl 9). https://acrabstracts.org/abstract/a-mapk-activated-kinase-2-inhibitor-attenuates-inflammatory-and-destructive-arthritis-in-human-ex-vivo-models/. Accessed .
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2018 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/a-mapk-activated-kinase-2-inhibitor-attenuates-inflammatory-and-destructive-arthritis-in-human-ex-vivo-models/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology