ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 924

10X Genomics-Based Single-Cell RNA-Seq and Low Input RNA-Seq Identify a Transcriptional Landscape Supporting Interferon in the Pathogenesis of Autoimmune-Associated Congenital Heart Block

Hemant Suryawanshi1, Jill P. Buyon2, Miao Chang2, Thomas Tuschl1 and Robert M. Clancy2, 1Howard Hughes Medical Institute and The Rockefeller University, New York, NY, 2NYU School of Medicine, New York, NY

Meeting: 2018 ACR/ARHP Annual Meeting

Keywords: Bioinformatics, Biomarkers, heart block and neonatal lupus, RNA

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Date: Sunday, October 21, 2018

Title: 3S106 ACR Abstract: Pediatric Rheumatology–Basic Science (922–927)

Session Type: ACR Concurrent Abstract Session

Session Time: 4:30PM-6:00PM

Background/Purpose: Towards understanding the molecular mechanisms that link maternal anti-Ro antibodies to the development of conduction system disease in a second trimester fetus, single cell (scRNA-seq) and bulk RNA-seq were applied to a fetal heart dying with complete congenital heart block (CHB) and a gestational age-matched healthy heart from an elective termination.

Methods: The CHB heart was obtained from a 20-week fetus identified to have complete block at 19 weeks. The mother (35 y/o Asian with SS on no hydroxychloroquine) declined dexamethasone or IVIG and elected to terminate, thus no exposure to maternal medications confounded interpretation of findings. Both hearts were obtained under identical conditions. Freshly collected single-cell suspensions were generated using a Langendorff preparation with cannulation and perfusion of the aorta with collagenase and trypsin enzymes. Two approaches were taken to mine the transcriptome in the resulting cell suspensions: agnostic evaluation applying 10X Genomics platform-based scRNA-seq and low input RNA-seq of flow sorted cells upon leukocytes (DAPI negative, CD45+) and fibroblasts (DAPI negative, CD45-, podoplanin-positive).

Results: For scRNA-seq, we obtained 2,693 and 5,408 high-quality scRNA-seq profiles from the control and CHB hearts, respectively. We applied a graph-based clustering method and identified 13 and 14 major clusters of cells from the control and CHB hearts, respectively, as visualized by t-distributed stochastic neighbor embedding (t-SNE). Differential gene expression analysis guided by established lineage markers revealed four cardiomyocyte clusters (CM1-CM4), three fibroblast clusters (FB1-FB3), endothelial cells (EC), erythroblasts (EB), macrophages (MAC), dendritic cells (DC), T cells (TC) and B cells (BC). Ranked by abundance, the control heart exhibited CM>FB>EC>MAC>DC>EB, BC, TC; the CHB heart exhibited CM>FB>EC, MAC>TC, BC, EB. The CHB heart also contained natural killer cells (NK) and mast cells (MC, lowest abundance). Given the high abundance of MACs among the immune cells (control:108;CHB:606) and the consistent identification of MACs on histologic analysis of CHB hearts, differential expression analysis demonstrated overexpression of interferon-induced genes (4-fold or greater, i.e. log2(CHB-control)>2) in CHB MACs. In CHB, most cell types expressed high levels of ISG1, IFITM1 and IFITM3, whereas in the control only IFITM3 showed widespread expression. For SIGLEC1, expression was restricted to MACs and was expressed by 18% of CHB MACs and only 6% of control MACs. While the transcriptome using low input RNA-seq of anti-CD45 flow-sorted CHB leukocytes did not allow granular analysis of leukocyte subpopulations, expression of SIGLEC1 and interferon-related genes were increased in CHB versus control. Applying 10X Genomics, proliferating fibroblasts expressed MKI67 and TOP2A in CHB but not control fibroblasts.

Conclusion: This unprecedented opportunity to obtain CHB tissue absent any exposure to maternal medications support scRNA-seq’s utility to survey landscape and heterogeneity not possible with low input RNA-seq of flow-sorted cells. IFN- and SIGLEC1-positive macrophages may contribute to fibrosis.


Disclosure: H. Suryawanshi, None; J. P. Buyon, Exagen, 2; M. Chang, None; T. Tuschl, None; R. M. Clancy, None.

To cite this abstract in AMA style:

Suryawanshi H, Buyon JP, Chang M, Tuschl T, Clancy RM. 10X Genomics-Based Single-Cell RNA-Seq and Low Input RNA-Seq Identify a Transcriptional Landscape Supporting Interferon in the Pathogenesis of Autoimmune-Associated Congenital Heart Block [abstract]. Arthritis Rheumatol. 2018; 70 (suppl 9). https://acrabstracts.org/abstract/10x-genomics-based-single-cell-rna-seq-and-low-input-rna-seq-identify-a-transcriptional-landscape-supporting-interferon-in-the-pathogenesis-of-autoimmune-associated-congenital-heart-block/. Accessed .
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2018 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/10x-genomics-based-single-cell-rna-seq-and-low-input-rna-seq-identify-a-transcriptional-landscape-supporting-interferon-in-the-pathogenesis-of-autoimmune-associated-congenital-heart-block/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology