ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 1717

Endothelial to Mesenchymal Transition Contributes to the Development of Pulmonary Vasculopathy in Systemic Sclerosis PAH

Robert Good1, Adrian Gilbane2, Sarah Trinder2, David Abraham3, Christopher Denton3 and Alan M. Holmes4, 1Rheumatology and Connective Tissue Diseases, UCL, LONDON, United Kingdom, 2Rheumatology and Connective Tissue Diseases, UCL, London, United Kingdom, 3Rheumatology and Connective Tissue Diseases, UCL Medical School, London, United Kingdom, 4Centre for Rheumatology and Connective Tissue Diseases, UCL, London, United Kingdom

Meeting: 2014 ACR/ARHP Annual Meeting

Keywords: endothelial cells, Pulmonary complications and scleroderma

  • Tweet
  • Email
  • Print
Session Information

Title: Systemic Sclerosis, Fibrosing Syndromes and Raynaud's - Pathogenesis, Animal Models and Genetics

Session Type: Abstract Submissions (ACR)

Background/Purpose

Vascular complications in Scleroderma (SSc) patients are associated with high mortality, particularly in patients who develop pulmonary arterial hypertension (SSc-PAH). Vascular complications, thought to arise from initial activation and dysfunction of the endothelium can lead to: elevated vascular leak, inflammation, mesenchymal hypertrophy by activation of resident smooth muscle cells and fibroblasts, and neointima formation. Recent studies suggest that as well as resident mesenchymal cells, endothelial cells can undergo endothelial-mesenchymal transition (EndoMT), and acquire a mesenchymal phenotype which may contribute to the expansion of the mesenchymal cell population. Here we sought to determine the prevalence of EndoMT in SSc-PAH patients and pre-clinical models of PAH, and assess the cellular effects on pulmonary artery endothelial cells (PAECs) functions.

Methods

Using lung tissue from SSc-PAH patients (n=3), healthy control (HC) donors (n=3), and from the hypoxia/SU5416 pre-clinical murine model of PAH (n=5), EndoMT was determined by immunofluorescence based on co-expression of vWF and αSMA. EndoMT was induced in human PAECs (n=3) in vitro by TNFα [5ng/ml], IL-1β [0.1ng/m;] and TGFβ [5ng/ml] in combination. Morphological changes were assessed by light microscopy and phalloidin staining. Western blotting and immunofluorescence was used to quantify: CD31, vWF, occludin, VE-cadherin, αSMA, calponin and collagen type 1 expression. Conditioned media was collected from PAECs, PAECs following treatment to initiate EndoMT and SSc-PAH and HC fibroblasts; levels of inflammatory secretion was quantified by MSD arrays. The capacity of homogenous EndoMT monolayers (n=6) and mixed cultures of 1:10 EndoMT:PAECs (n=6) cells to form exclusion barriers was assessed using trans-well permeability FITC-albumin assays.

Results

Co-localisation of vWF and αSMA was observed in ≤5% of pulmonary arteries from SSc-PAH patients and hypoxia/SU5416 mice. PAECs treated with TNFα, IL-1β and TGFβ exhibited significant changes in morphology, loss of endothelial markers and elevated expression of mesenchymal markers by day 6. There was a significant (P<0.05) increase in secretion of pro-inflammatory chemokines by EndoMT cells compared to PAECs including IL-6 [474±95 vs.12±6.6 pg/ml] and IL-8 [620±71 vs.28±6.5 pg/ml]. EndoMT cells alone or in mixed 1:10 ratio cultures with PAECs, exhibited a significant (P>0.01) 5-fold increase in permeability compared to PAECs alone. Consistent with this, EndoMT cells co-cultured with PAECs in a ratio of 1:10 led to 2.5-fold significant (P>0.05) increase in permeability.

Conclusion

The co-localisation of vWF and αSMA present in the pulmonary arteries of SSc-PAH patients and pre-clinical models of PAH, is indicative of EndoMT. We demonstrate EndoMT leads to a loss of normal PAEC morphology and an enhanced secretion of pro-inflammatory chemokines. Furthermore EndoMT cells failed to form integral biological barriers and contributed to enhanced permeability of PAEC barriers. Collectively our data suggests that EndoMT may contribute to the loss of normal endothelium function and the development of SSc-PAH.


Disclosure:

R. Good,
None;

A. Gilbane,
None;

S. Trinder,
None;

D. Abraham,
None;

C. Denton,
None;

A. M. Holmes,
None.

  • Tweet
  • Email
  • Print

« Back to 2014 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/endothelial-to-mesenchymal-transition-contributes-to-the-development-of-pulmonary-vasculopathy-in-systemic-sclerosis-pah/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology