ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 337

Patient-Reported Flares Were Correctly Predicted By an Algorithm Using Machine-Learning Statistics on Activity Tracker Data on Steps, in a Longitudinal 3-Month Study of 170 Patients with Rheumatoid Arthritis (RA) or Axial Spondyloarthritis (axSpA)

Laure Gossec1, Frédéric Guyard2, Didier Leroy3, Thomas Lafargue2, Michel Seiler3, Charlotte Jacquemin1, Anna Molto4, Jeremie Sellam5, Violaine Foltz1, Frédérique Gandjbakhch1, Christophe Hudry6, Stéphane Mitrovic1, Bruno Fautrel1 and Herve Servy7, 1UPMC University Paris 06, Pitié-Salpétrière Hospital, Paris, France, 2IMT, Orange, Nice, France, 3Healthcare, Orange, Paris, France, 4Hôpital Cochin, Department of Rheumatology, Paris Descartes University, Paris, France, 5Rheumatology, Saint-Antoine Hospital, Paris, France, 6AP-HP Hôpital Cochin, Paris, France, 7e-health services, Sanoia, Gemenos, France

Meeting: 2017 ACR/ARHP Annual Meeting

Date of first publication: September 18, 2017

Keywords: Ankylosing spondylitis (AS), Big data, patient outcomes, physical activity and rheumatoid arthritis (RA)

  • Tweet
  • Email
  • Print
Session Information

Date: Sunday, November 5, 2017

Title: Patient Outcomes, Preferences, and Attitudes Poster I

Session Type: ACR Poster Session A

Session Time: 9:00AM-11:00AM

Background/Purpose: The natural history of RA and axSpA comprises periods of low disease activity and flares. However, there are few data linking patient-reported flares to quantifiable outcomes. We previously indicated in the ActConnect study that flares were related to a moderate decrease in physical activity (1). Objective: to predict patient-reported flares based on activity-tracker-provided continuous flows of steps per minute.

Methods: This prospective multi-center observational study (ActConnect) included patients with definite RA (ACR/EULAR criteria) or axSpA (ASAS criteria), owning a smartphone. Over 3 months, physical activity was sampled continuously (each minute) using an activity tracker, and flares were self-assessed weekly using a specific flare question. In this reanalysis of the dataset, Machine Learning statistical methods were used. Physical activity data were first normalized at patient level using each patientÕs mean and standard deviation of steps for a similar timeframe without flares. Then the data were analysed by multiclass Bayesian methods with a Machine Learning software belonging to Orange (2). The software was instructed to find the best predictive model of patient-reported flares. Sensitivities and specificities were calculated. Several sensitivity analyses were performed using different physical activity timeframes, different definitions of flares.

Results: In all, 170/178 patients (91 RA and 79 axSpA patients; 1228 weekly flare assessments and 24,972 1-hour physical activity assessment timeframes) were analyzed: mean age 45.5±12.4 years, mean disease duration 10.3±8.7 years; 60 (35.3%) were males and 90 (52.9%) received biologics. Disease was well-controlled (mean DAS28: 2.3±1.2; mean BASDAI: 3.3±2.1) but flares were frequent: reported in 24% of all the questionnaires. The Khiops generated model detected correctly both flares and absence of flare (Table) with a sensitivity of 96% and a specificity of 97%. The corresponding positive and negative predictive values were respectively 89% and 99%. Sensitivity analyses were confirmatory.

Conclusion: Machine Learning methods are useful to deal with repeated data in big datasets. The results confirm objectively the functional impact of patient-reported flares. Furthermore, the correct detection of flares by the activity tracker and adapted statistics opens the way for future studies of flares using connected devices with great precision and minimal patient burden.

 

1 – Jacquemin C et al. Physical activity decreased significantly but moderately during weeks where patients reported flares: A 3-month study of 170 rheumatoid arthritis (RA) or axial spondyloarthritis (AXSPA) patients wearing an activity tracker, Ann Rheum Dis 2017 (suppl): EULAR congress, poster FRI0700.

2- Khiops software for data mining, PredicSis; accessed 06/01/2017: https://khiops.predicsis.com


Disclosure: L. Gossec, None; F. Guyard, Orange, 3; D. Leroy, Orange, 3; T. Lafargue, Orange, 3; M. Seiler, Orange, 3; C. Jacquemin, None; A. Molto, None; J. Sellam, None; V. Foltz, None; F. Gandjbakhch, None; C. Hudry, None; S. Mitrovic, None; B. Fautrel, AbbVIe, Biogen, BMS, Celgene, Hospira, Janssen, Eli Lilly and Company, Novartis, Pfizer, Roche, SOBI Pharma, UCB, 5; H. Servy, None.

To cite this abstract in AMA style:

Gossec L, Guyard F, Leroy D, Lafargue T, Seiler M, Jacquemin C, Molto A, Sellam J, Foltz V, Gandjbakhch F, Hudry C, Mitrovic S, Fautrel B, Servy H. Patient-Reported Flares Were Correctly Predicted By an Algorithm Using Machine-Learning Statistics on Activity Tracker Data on Steps, in a Longitudinal 3-Month Study of 170 Patients with Rheumatoid Arthritis (RA) or Axial Spondyloarthritis (axSpA) [abstract]. Arthritis Rheumatol. 2017; 69 (suppl 10). https://acrabstracts.org/abstract/patient-reported-flares-were-correctly-predicted-by-an-algorithm-using-machine-learning-statistics-on-activity-tracker-data-on-steps-in-a-longitudinal-3-month-study-of-170-patients-with-rheumatoid-ar/. Accessed .
  • Tweet
  • Email
  • Print

« Back to 2017 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/patient-reported-flares-were-correctly-predicted-by-an-algorithm-using-machine-learning-statistics-on-activity-tracker-data-on-steps-in-a-longitudinal-3-month-study-of-170-patients-with-rheumatoid-ar/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology