ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 1015

Mir-9/MCPIP1 Axis Mediated Regulation of IL-6 Expression in Osteoarthritis Chondrocytes

Tariq Haqqi1, Abdul Haseeb2 and Mohammad Shahidul Makki2, 1Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 2Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH

Meeting: 2014 ACR/ARHP Annual Meeting

Keywords: chondrocytes and osteoarthritis, IL-6, MicroRNA

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Title: Biology and Pathology of Bone and Joint: Cartilage, Synovium and Osteoarthritis

Session Type: Abstract Submissions (ACR)

Background/Purpose

Post-transcriptional regulation of cytokine expression is important for maintaining tissue integrity. MCPIP1 was identified as a novel protein, which destabilizes inflammatory cytokines mRNAs via their 3’ UTR. IL-6 has recently gained attention because of its high levels in synovial fluid in Osteoarthritis (OA) and ability to induce high levels of MMP-13 in OA. In the present study we determined whether MCPIP1 regulates IL-6 expression and evaluated the role of miR-9/MCPIP1 axis in the regulation of IL-6 in human OA chondrocytes.

Methods

Human chondrocytes were prepared from OA cartilage by the enzymatic digestion. TaqMan assays were used for gene expression analysis using RNA isolated from cultured primary chondrocytes or from damaged or smooth regions of OA cartilage or RNA immunoprecipitation (RIP). RNA fluorescent in-situ hybridization (ISH) for IL-6 and MCPIP1 expression was performed using RNAScope. Transfection was done using Amaxa kit. Knockdown experiments were performed using Trisilencer-27 human siRNA. For RIP, lysates from IL-1b-stimulated chondrocytes were incubated overnight with anti-MCPIP1 antibody or with isotype control IgG followed by RNA purification.

Results

MCPIP1 expression was low in damaged cartilage compared to smooth cartilage while the expression of IL-6 was high in damaged cartilage and low in smooth cartilage, suggesting that lower expression of MCPIP1 may be contributing to the excessive expression of IL-6 in OA. Expression of miR-9 predicted by TargetscanS to bind the seed sequence in MCPIP1 mRNA was high in damaged cartilage compared to smooth cartilage and was also upregulated by IL-1b in OA chondrocytes. Over expression of miR-9 mimic or inhibitor in OA chondrocytes altered the expression of MCPIP1 and IL-6. IL-1b-mediated induction of IL-6 was initially low in OA chondrocytes but was significantly accelerated 8 h post-stimulation. On the other hand, expression of MCPIP1 was high initially in IL-1b-stimulated OA chondrocytes but started to decline 8 h post-stimulation. Overexpression of wild type MCPIP1, but not of mutant MCPIP1, in OA chondrocytes reduced the expression of IL-6 mRNA and protein significantly (p<0.05). Importantly siRNA-mediated knockdown of MCPIP1 elevated the IL-6 mRNA expression in OA chondrocytes. TaqMan analysis of the immunoprecipitated mRNAs showed that anti-MCPIP1 antibody pulled down larger amount of IL-6 mRNA than control IgG antibody did thus demonstrating the binding of MCPIP1 with IL-6 mRNA in OA chondrocytes.

Conclusion s

In this study for the first time expression of MCPIP1 and miR-9 in human OA cartilage and chondrocytes is shown. The data also demonstrate miR-9/MCPIP1/IL-6 interactions and provide evidence of miR-9/MCPIP1 axis as an important regulator of IL-6 expression in OA.

Background/Purpose 

Methods 

Results 

Conclusion


Disclosure:

T. Haqqi,
None;

A. Haseeb,
None;

M. Shahidul Makki,
None.

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2014 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/mir-9mcpip1-axis-mediated-regulation-of-il-6-expression-in-osteoarthritis-chondrocytes/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology