ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 1726

Human Skin in Organ Culture As an Ex Vivo Model for Assessing the Fibrotic Effects of Bleomycin

Tomoya Watanabe1, Logan Mlakar2, Jonathan Heywood3, Maya Malaab2 and Carol A. Feghali-Bostwick4, 1Rheumatology, Medical University of South Carolina, Charleston, SC, 2Medical University of South Carolina, Charleston, SC, 3Rheumataology, Medical University of South Carolina, Chareston, SC, 4Division of Rheumatology and Immunology, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, United States, Charleston, SC

Meeting: 2017 ACR/ARHP Annual Meeting

Date of first publication: September 18, 2017

Keywords: fibrosis and skin fibrosis

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Date: Monday, November 6, 2017

Title: Systemic Sclerosis, Fibrosing Syndromes and Raynaud's – Pathogenesis, Animal Models and Genetics Poster II

Session Type: ACR Poster Session B

Session Time: 9:00AM-11:00AM

Background/Purpose:

Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology. Using human skin as an ex vivo organ model of fibrosis is an attractive tool to examine mechanisms underlying fibrosis and assess the potential effect of anti-fibrotic therapies. We have previously shown that a single injection of TGF-β induced dermal fibrosis in human skin ex vivo. In this study, we examined the effect of Bleomycin (BLM).

Methods: Human skin was stimulated with BLM using two different methods: injection and immersion. For the injection method, normal human skin was obtained from residual tissue following plastic surgery. Subcutaneous fat tissue was removed and skin tissue was cut into 1.5 cm x 1.5 cm sections. Skin tissues were injected intradermally with a total volume of 100 μl of 1×PBS: BLM (1 or 10 mU/ml) or 1× PBS as a vehicle control. Skin samples were cultured in an air-liquid interface with the epidermal side up. The culture medium was replaced after 72h. After 7 days, skin tissue corresponding to an area with 8-mm diameter centered around the injection site was harvested with a disposable 3 mm punch. For the immersion method, normal human skin was cut with a disposable 3 mm punch, and punches were cultured in medium containing BLM (1 or 10 mU/ml) or 1× PBS as a vehicle control. Skin tissues were harvested after 48 hours or 7 days post-treatment for real-time PCR and hydroxyproline assay, respectively.

Results: BLM significantly increased hydroxyproline levels and dermal thickness in a dose-dependent manner 7 days after injection. BLM had a similar effect on skin punches immersed in media for the same duration. The increase in hydroxyproline was paralleled by increased dermal thickness and Masson Trichrome staining. qRT-PCR analysis revealed that the expression levels of fibrosis-related genes, collagen 1A1, fibronectin, CTGF, and TGFb1, were significantly increased in BLM-treated skin compared with control skin.

Conclusion:

Our findings show that BLM induces fibrosis in human skin and higher doses of BLM are more effective at inducing significant increases in collagen content, expression of fibrosis-associated genes, and dermal thickness. Moreover, immersing skin in medium containing BLM is more effective at inducing dermal fibrosis than intradermal BLM injections. BLM treatment using the immersion method may be an attractive tool for the functional analysis of skin fibrosis in human skin in organ culture, providing a tool with direct relevance to human fibrotic skin disease.


Disclosure: T. Watanabe, None; L. Mlakar, None; J. Heywood, None; M. Malaab, None; C. A. Feghali-Bostwick, None.

To cite this abstract in AMA style:

Watanabe T, Mlakar L, Heywood J, Malaab M, Feghali-Bostwick CA. Human Skin in Organ Culture As an Ex Vivo Model for Assessing the Fibrotic Effects of Bleomycin [abstract]. Arthritis Rheumatol. 2017; 69 (suppl 10). https://acrabstracts.org/abstract/human-skin-in-organ-culture-as-an-ex-vivo-model-for-assessing-the-fibrotic-effects-of-bleomycin/. Accessed .
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2017 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/human-skin-in-organ-culture-as-an-ex-vivo-model-for-assessing-the-fibrotic-effects-of-bleomycin/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology