ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 58

Cartilage-like Tissue Generation By 3D-Bioprinting of Induced Pluripotent Stem Cells

Rocío Castro-Viñuelas1, Alma Forsman2, Erdem Karabulut3, Erik Romberg3, Camilla Brantsing2, Mats Brittberg4, Anders Lindahl2, Paul Gatenholm3 and Stina Simonsson2, 1Cell Therapy and Regenerative Medicine research group. Rheumatology Division. Institute of Biomedical Research of A Coruña (INIBIC). Dep. of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, A Coruña, Spain, 2Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg., Gothenburg, Sweden, 33D Bioprinting Center, Dept. of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden, 4Cartilage Repair Unit, University of Gothenburg, Region Halland Orthopaedics, Kungsbacka Hospital, Kungsbacka, Sweden

Meeting: 2017 ACR/ARHP Annual Meeting

Date of first publication: September 18, 2017

Keywords: 3D model, iPS (induced pluripotent stem cells) and tissue engineering, OA

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Date: Sunday, November 5, 2017

Title: Biology and Pathology of Bone and Joint Poster I

Session Type: ACR Poster Session A

Session Time: 9:00AM-11:00AM

Background/Purpose: Cartilage lesions due to traumatic or pathological conditions slowly grow over the time and may lead to osteoarthritis (OA). As a prospective treatment for such lesions, it has been shown that human-derived induced pluripotent stem cells (iPSCs) can be 3D bioprinted and directed to form cartilage-like tissue (Nguyen et al. 2017). The advantages of using an established iPSC line are unlimited cell source with regeneration capacity and chondrogenic differentiation potential. The aim of this study was to improve the generation of cartilage-like tissue when 3D bioprinting of iPSCs by using molecularly modified nanocelullose/alginate bioink to resemble natural environment found in the tissue.

Methods: In this study the chondrocyte-derived iPSc line “A2B” was used (Borestrom et al. 2014). These cells were bioprinted in combination with a modified bioink composed by nanocellulose and alginate. One week after bioprinting, the constructs were cultured in chondrogenic medium in order to stimulate cell differentiation towards chondrocytes. Cell number and viability was studied. Histological analyses of the 3D printed constructs were performed. Furthermore, expression of pluripotency and chondrogenic specific genes was assessed by Taqman qPCR before and after differentiation.

Results: High viability of the iPSCs inside the constructs was found after bioprinting. 3D printed constructs were positively stained for alcian blue van gieson staining, showing proteoglycans presence inside the prints. Molecular analyses showed high relative expression levels of the pluripotency-related gene Oct4 before initiating the differentiation protocol. Cells inside the constructs express chondrogenic specific genes, such as collagen type 2 and Sox9 after 6 weeks of differentiation. Moreover, 3D printed constructs showed cartilage-resembles (Figure 1).

Conclusion : Modified Nanocellulose/alginate bioink allowed 3D printing of the iPSCs and the in vitro generation of cartilage-like tissue. This approach could be used in the future to model OA disease or to perform screenings of different therapeutic compounds.

Figure 1. Cartilage mimic by 3D bioprinting iPSCs differentiated for 6 weeks in modified bio ink.


Disclosure: R. Castro-Viñuelas, None; A. Forsman, None; E. Karabulut, None; E. Romberg, None; C. Brantsing, None; M. Brittberg, None; A. Lindahl, None; P. Gatenholm, None; S. Simonsson, None.

To cite this abstract in AMA style:

Castro-Viñuelas R, Forsman A, Karabulut E, Romberg E, Brantsing C, Brittberg M, Lindahl A, Gatenholm P, Simonsson S. Cartilage-like Tissue Generation By 3D-Bioprinting of Induced Pluripotent Stem Cells [abstract]. Arthritis Rheumatol. 2017; 69 (suppl 10). https://acrabstracts.org/abstract/cartilage-like-tissue-generation-by-3d-bioprinting-of-induced-pluripotent-stem-cells/. Accessed .
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2017 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/cartilage-like-tissue-generation-by-3d-bioprinting-of-induced-pluripotent-stem-cells/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology