ACR Meeting Abstracts

ACR Meeting Abstracts

  • Home
  • Meetings Archive
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018 ACR/ARHP Annual Meeting
    • 2017 ACR/ARHP Annual Meeting
    • 2017 ACR/ARHP PRSYM
    • 2016-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and print all favorites
    • Clear all your favorites
  • Meeting Resource Center

Abstract Number: 0342

Multimorbidity Clusters in Psoriatic Arthritis: A Population-Based Study

Paras Karmacharya1, Dilli Poudel2, Cynthia Crowson3, John Davis4, Kerry Wright4 and Alexis Ogdie2, 1Mayo Clinic, Rochester MN, ROCHESTER, MN, 2University of Pennsylvania, Philadelphia, PA, 3Mayo Clinic, Rochester, Minnesota, USA, Rochester, MN, 4Mayo Clinic, Rochester, MN

Meeting: ACR Convergence 2020

Keywords: population studies, Psoriatic arthritis, Spondylarthropathies

  • Tweet
  • Email
  • Print
Save to PDF
Session Information

Date: Friday, November 6, 2020

Session Title: Spondyloarthritis Including Psoriatic Arthritis – Diagnosis, Manifestations, & Outcomes Poster I: Psoriatic Arthritis

Session Type: Poster Session A

Session Time: 9:00AM-11:00AM

Background/Purpose: Psoriatic arthritis (PsA) patients have a higher prevalence of cardiometabolic and other morbidities compared to the general population. Studies suggest that a single clinical variable cannot adequately predict which PsA patients will have worse outcomes; therefore studying these morbidities together will provide better insight. Multimorbidity refers to the simultaneous presence of ≥2 morbidities, and certain morbidities are more likely to cluster than others. We used The Health Improvement Network (THIN) database to identify prevalent multimorbidity clusters in PsA.

Methods: We used the THIN database (2000-14) to identify adults (aged 18–89 years) with PsA using the Read code for PsA (positive predictive value- 85%). THIN contains systematically and prospectively recorded data by general practitioners in the UK. Morbidities in PsA were selected by clinical relevance and by previous reports, and only those occurring ≥1% were included. Multimorbidity clusters were identified using K-median clustering, which is an unsupervised machine learning algorithm which groups data into a user-specified number (k) of clusters based on a set of variables (here morbidities). The optimal number of clusters was determined using the elbow method. K-median clustering was run on the dataset for a range of values of k (e.g., k from 1 to 10); and for each value of k, sum of squared errors (SSE) was calculated. In a scree plot of the SSE for each value of k, we identified the “elbow” on the arm (graph line), which was taken as the best value of k.

Results: There were 14,560 PsA patients identified in the THIN database from 2000-14, with a mean age of 47 ±15 years and 50% males. Psoriasis was the most prevalent morbidity (98.45%), followed by obesity (22.9%) and depression (19.2%) (Figure 1). The optimal number of clusters determined using the elbow method was 5. The five clusters included relatively healthy (62%), osteoarthritis (11%), liver disease (1%), obesity (18%), and anxiety/depression (8%) (Figure 2). Males had higher odds of being in the anxiety/depression (OR=2.11, 95% CI 1.86 to 2.40), obesity (OR=1.54, 95% CI 1.41 to 1.68), and osteoarthritis (OR=1.47, 95% CI 1.32 to 1.64) clusters compared to the healthy cluster.

Conclusion: Distinct multimorbidity clusters were identified in PsA patients in the THIN database. Further research is needed to look for common pathophysiologic mechanisms within each clusters and comparison with the general population. The identified clusters could have different effects on important outcomes in PsA.

Figure 1. Prevalence of morbidities in psoriatic arthritis

Figure 2. Multimorbidity clusters in psoriatic arthritis


Disclosure: P. Karmacharya, National Center for Advancing Translational Science, 2, SPARTAN (Spondyloarthritis Research and Treatment Network), 2; D. Poudel, None; C. Crowson, Myriad Genetics, 1, Pfizer, 1; J. Davis, Pfizer, 2, AbbVie, 5, 8, Sanofi-Genzyme, 5, 8; K. Wright, None; A. Ogdie, abbvie, 1, amgen, 1, bms, 1, celgene, 1, corona, 1, lilly, 1, janssen, 1, novartis, 1, 2, novartis, 1, pfizer, 1.

To cite this abstract in AMA style:

Karmacharya P, Poudel D, Crowson C, Davis J, Wright K, Ogdie A. Multimorbidity Clusters in Psoriatic Arthritis: A Population-Based Study [abstract]. Arthritis Rheumatol. 2020; 72 (suppl 10). https://acrabstracts.org/abstract/multimorbidity-clusters-in-psoriatic-arthritis-a-population-based-study/. Accessed January 15, 2021.
  • Tweet
  • Email
  • Print
Save to PDF

« Back to ACR Convergence 2020

ACR Meeting Abstracts - https://acrabstracts.org/abstract/multimorbidity-clusters-in-psoriatic-arthritis-a-population-based-study/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

ACR Convergence: Where Rheumatology Meets. All Virtual. November 5-9.

ACR Pediatric Rheumatology Symposium 2020

© COPYRIGHT 2021 AMERICAN COLLEGE OF RHEUMATOLOGY

Wiley

  • Home
  • Meetings Archive
  • Advanced Search
  • Meeting Resource Center
  • Online Journal
  • Privacy Policy
  • Permissions Policies
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
This site uses cookies: Find out more.