ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 493

Methotrexate Is an Antibacterial Drug Metabolized By Human Gut Bacteria

Renuka R. Nayak1, Kye Stapleton-Gray2, Colleen O'Loughlin3, Michael Fischbach4 and Peter J. Turnbaugh5, 1Department of Medicine, Division of Rheumatology, Rosalind Russell / Ephraim P. Engleman Rheumatology Research Center, San Francisco, CA, 2Carnegie Mellon University, Pittsburgh, PA, 3University of California, San Francisco, San Francisco, CA, 4Department of Bioengineering and Therapeutic Sciences,, University of California, San Francisco, San Francisco, CA, 5Microbiology and Immunology, University of California, San Francisco, San Francisco, CA

Meeting: 2017 ACR/ARHP Annual Meeting

Date of first publication: September 18, 2017

Keywords: methotrexate (MTX), microbiome and rheumatoid arthritis (RA)

  • Tweet
  • Email
  • Print
Session Information

Date: Sunday, November 5, 2017

Title: Rheumatoid Arthritis – Human Etiology and Pathogenesis Poster I

Session Type: ACR Poster Session A

Session Time: 9:00AM-11:00AM

Background/Purpose:

Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology causing inflammation and irreversible damage in joints and other organs. Methotrexate (MTX) is first-line therapy used in the treatment of RA. However, not all patients respond to MTX — about 50-60% of patients require additional therapy. Because MTX is a folic acid analogue that may affect evolutionarily conserved pathways found in bacteria, we hypothesized that the gut microbiome is altered by MTX and that gut bacteria metabolize the drug. Since gut bacteria have been shown previously to metabolize many pharmacologic drugs, we also sought to investigate the impact of the microbiome on inter-individual variations in MTX response. Here, we focus on the response of bacteria to MTX and ask whether bacteria can metabolize MTX.

Methods:

We tested the in vitro growth of 40 gut bacterial isolates in response to MTX. The minimal inhibitory concentration (MIC), or the concentration of MTX required to suppress bacterial growth > 90%, was identified for each isolate. We asked if these in vitro findings were recapitulated in vivo by colonizing germ-free mice with human gut bacteria and treating with daily oral MTX at high (50 mg/kg) and low (1 mg/kg) doses. Next, we asked if bacteria metabolized MTX by examining either pure bacterial cultures in vitro or human stool sample ex vivo. Samples were incubated with MTX and metabolism was measured using HPLC. In select cases, we also used UPLC-MS-MS to learn the identity of MTX metabolites.

Results:

MTX inhibited the growth of 33 of the 40 isolates examined. MICs ranged from 2 ug/ml to >900 ug/ml in vitro. At the Phylum level, Bacteroidetes tended to be sensitive and Firmicutes tended to be resistant to the antimicrobial effects of MTX (Wilcoxon rank sum, p=0.005). In vivo studies showed that high-dose MTX altered the humanized gut microbiome of mice compared to those that were saline-treated (ANOSIM, p=0.001). The relative abundance of Bacteroidetes decreased while Firmicutes increased, recapitulating what was seen in vitro. Low-dose MTX also produced changes to the microbiome, but this effect was subtler. We next asked whether gut bacteria metabolize MTX, and found that 8 possessed this ability in vitro. At least two species metabolized MTX into polyglutamated MTX, which is a novel finding that has not been described previously in the literature. In ex vivo studies, human fecal slurries incubated with MTX produced known as well as novel MTX metabolites.

Conclusion:

We conclude that MTX is an antibacterial drug. Furthermore, we find that gut bacteria metabolize MTX. One metabolite found in our study was polyglutamated MTX, which prior studies have shown to be associated with patient response. Our ongoing and future studies will examine the in vivo implications of these findings in mice and examine whether bacterial metabolism of MTX is associated with clinical response in patients. Our findings support the hypothesis that a patient’s response to MTX may be influenced by their gut microbiome. Thus, the microbiome may be an important factor in predicting patient response to MTX and perhaps other rheumatologic medications as well.


Disclosure: R. R. Nayak, None; K. Stapleton-Gray, None; C. O'Loughlin, None; M. Fischbach, None; P. J. Turnbaugh, None.

To cite this abstract in AMA style:

Nayak RR, Stapleton-Gray K, O'Loughlin C, Fischbach M, Turnbaugh PJ. Methotrexate Is an Antibacterial Drug Metabolized By Human Gut Bacteria [abstract]. Arthritis Rheumatol. 2017; 69 (suppl 10). https://acrabstracts.org/abstract/methotrexate-is-an-antibacterial-drug-metabolized-by-human-gut-bacteria-2/. Accessed .
  • Tweet
  • Email
  • Print

« Back to 2017 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/methotrexate-is-an-antibacterial-drug-metabolized-by-human-gut-bacteria-2/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology