ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 822

Inhibition Of Casein Kinase II Reduces TGFβ Induced Fibroblast Activation and Ameliorates Experimental Fibrosis

Yun Zhang, Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany, Erlangen, Germany

Meeting: 2013 ACR/ARHP Annual Meeting

Keywords: Fibroblasts, Janus kinase (JAK), scleroderma and systemic sclerosis

  • Tweet
  • Email
  • Print
Session Information

Title: Systemic Sclerosis, Fibrosing Syndromes and Raynaud’s-Pathogenesis, Animal Models and Genetics I: Therapeutic Interventions in Preclinical Animal Models of Scleroderma

Session Type: Abstract Submissions (ACR)

Background/Purpose:

Casein kinase-2 (CK2) is a highly conserved serine/threonine kinase. CK2 is a tetramer composed of 2 catalytic subunits (α or α’) and 2 β regulatory subunits, which are essential for cell viability. CK2 is discussed as a target for cancer therapy and is currently evaluated in clinical trials. Recently, we have shown that targeting of JAK2 might be an interesting molecular approach for the treatment of systemic sclerosis (SSc).

Methods:

Activation of CK2, JAK2, and STAT3 in human skin and in experimental fibrosis were determined by immunohistochemical analysis. CK2 signaling was inhibited by the selective CK2 inhibitor 4, 5, 6, 7-Tetrabromobenzotriazole (TBB). The mouse models of bleomycin-induced and TGF-β receptor I (TBR)-induced dermal fibrosis were used to evaluate the anti-fibrotic potential of specific CK2 inhibition in vivo.

Results:

Increased expression of CK2 was detected by immunohistochemistry in skin sections of SSc patients, particularly in fibroblasts. Inhibition of CK2 by TBB in cultured fibroblasts completely abrogated the stimulatory effects of TGFβ on collagen release (p<0.05). After TBB treatment, stress fiber formation and α-smooth muscle actin (α-SMA) expression in TGFβ-stimulated fibroblasts were significantly reduced by 97% (p=0.0064) and 69% (p=0.0280). Besides reduced fibroblast activation, western blot analyses showed complete normalization of the levels of phosphorylated JAK2 (pJAK2) in the cytoplasm and of phosphorylated STAT3 (pSTAT3) in the nucleus of TGFβ-treated fibroblasts upon pre-incubation with TBB (p=0.0004 and p=0.0214). In addition, treatment with TBB effectively prevented bleomycin-induced fibrosis in mice with decreased dermal thickness by up to 70% (p<0.0001) and efficient reductions in myofibroblast counts by up to 68% (p=0.0002). TBR-induced fibrosis in mice was strongly ameliorated by TBB with efficient reductions of dermal thickening by 75% (p<0.0001). Myofibroblast counts and hydroxyproline content also decreased by 59% and 40% (p<0.0001 and p=0.0193), respectively. In both murine models, we observed reduced pJAK2 and pSTAT3 expression as analyzed by immunohistochemistry.

Conclusion:

We demonstrate that CK2 is activated in SSc and prove that inhibition of CK2 reduces canonical TGF-β signaling and prevents experimental fibrosis in different preclinical models. Considering the potent anti-fibrotic effects of CK2 inhibition, our study might have direct translational implications. These data provide first evidence that targeting CK2 may be a novel therapeutic approach for fibrotic diseases.


Disclosure:

Y. Zhang,
None;

  • Tweet
  • Email
  • Print

« Back to 2013 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/inhibition-of-casein-kinase-ii-reduces-tgf%ce%b2-induced-fibroblast-activation-and-ameliorates-experimental-fibrosis/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology