ACR Meeting Abstracts

ACR Meeting Abstracts

  • Meetings
    • ACR Convergence 2024
    • ACR Convergence 2023
    • 2023 ACR/ARP PRSYM
    • ACR Convergence 2022
    • ACR Convergence 2021
    • ACR Convergence 2020
    • 2020 ACR/ARP PRSYM
    • 2019 ACR/ARP Annual Meeting
    • 2018-2009 Meetings
    • Download Abstracts
  • Keyword Index
  • Advanced Search
  • Your Favorites
    • Favorites
    • Login
    • View and print all favorites
    • Clear all your favorites
  • ACR Meetings

Abstract Number: 2450

Evoked Pain Brain Response Is Associated with Reduced μ-Opioid Receptor Binding in Fibromyalgia

Heng Wang1, Daniel J. Clauw2, Jon-Kar Zubieta3 and Richard E. Harris4, 1Anesthesiology, University of Michigan, Ann Arbor, 2Anesthesiology/Internal Medicine (Rheum), University of Michigan, Ann Arbor, MI, 3Molecular and Behavioral Neuroscience Institue, Psychiatry, University of Michigan, Ann Arbor, 4Anesthesiology, University of Michigan, Ann Arbor, MI

Meeting: 2012 ACR/ARHP Annual Meeting

Keywords: fibromyalgia, Magnetic resonance imaging (MRI), opioids, pain and positron emission tomography (PET)

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
Session Information

Title: Plenary Session III: Discovery 2012

Session Type: Plenary Sessions

Background/Purpose:

Previous studies indicate that fibromyalgia (FM) patients have augmented clinical and brain responses to painful stimuli (i.e. hyperalgesia/allodynia), as well as increased production of endogenous opioids, and reduced μ-opioid receptor (MOR) binding. However, it is not known if these factors co-occur within the same individual or if these factors act independently. We performed a longitudinal investigation using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) in chronic pain patients diagnosed with FM to address this question. If these factors operate in the same individual, we expected an inverse correlation between changes in fMRI evoked pain activity and MOR binding potential (BP).

Methods:

fMRI and PET imaging sessions were performed on 18 female opioid-naïve FM patients (age 45.4+/- 13.0). Each participant underwent 4 weeks of non-pharmacological treatment. Before and after treatment, each patient underwent an fMRI scan with varying levels of pressure pain applied to the thumb as well as a 90-minute [11C]carfentanil PET scan under resting conditions. After quantification of the PET data with Logan plots, fMRI images and preprocessing of PET data were performed with statistical parametric mapping (SPM5). fMRI and PET scans were normalized to the same template. Difference images before and after treatment were calculated for both the fMRI contrast and PET images. A whole-brain voxel-by-voxel correlation analysis between the fMRI and PET difference images were carried out using the Biological Parametric Mapping toolbox. Activation clusters were defined based on a correlation coefficient, with |R|>=0.6 uncorrected. Clinical pain was assessed with Short Form McGill Pain Questionnaire (SFMPQ).

Results:

Negative correlations between the change in the fMRI blood oxygenation level dependent (BOLD) signal and MOR BP were observed in multiple regions involved in pain processing and modulation: right posterior insula R=-0.82,P=0.0004; left medial insula R=-0.82, P=0.0003; left orbital frontal cortex R=-0.75, P=0.0004; right amygdala R=-0.68, P=0.002; brainstem R=-0.71, P=0.0009. Positive correlations were observed in right DLPFC R=0.66, P=0.003; posterior cingulate R=0.62, P=0.006; right putamen R=0.72, P=0.0008. Changes in both functional imaging outcomes were negatively associated with changes in clinical pain: BOLD in right DLPFC and clinical pain SFMPQ; R=-0.52, P=0.03; MOR BP in left medial insula and SFMPQ present pain R=-0.51, P=0.03.

Conclusion:

We find strong longitudinal associations between evoked pain activations suggestive of hyperalgesia, and µ-opioid receptor availability (binding potential, BP) within the same brain regions, in individual FM patients. Positive associations were also observed between BOLD responses, and μ-opioid receptor BP (in opposive directions) with respect to clinical pain. These data suggest that the µ-opioid system is somehow involved in the pathogenesis of FM, and may even help explain why these patients are generally not felt to respond to narcotic analgesics, and may even be made worse when these drugs are used therapeutically.


Disclosure:

H. Wang,
None;

D. J. Clauw,

Pfizer Inc, Forest Laboratories, Merck, Nuvo ,

2,

Pfizer, Forest, Lilly, Merck, Nuvo, J and J ,

5;

J. K. Zubieta,
None;

R. E. Harris,

Pfizer Inc,

2,

Pfizer Inc,

5.

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2012 ACR/ARHP Annual Meeting

ACR Meeting Abstracts - https://acrabstracts.org/abstract/evoked-pain-brain-response-is-associated-with-reduced-%ce%bc-opioid-receptor-binding-in-fibromyalgia/

Advanced Search

Your Favorites

You can save and print a list of your favorite abstracts during your browser session by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

All abstracts accepted to ACR Convergence are under media embargo once the ACR has notified presenters of their abstract’s acceptance. They may be presented at other meetings or published as manuscripts after this time but should not be discussed in non-scholarly venues or outlets. The following embargo policies are strictly enforced by the ACR.

Accepted abstracts are made available to the public online in advance of the meeting and are published in a special online supplement of our scientific journal, Arthritis & Rheumatology. Information contained in those abstracts may not be released until the abstracts appear online. In an exception to the media embargo, academic institutions, private organizations, and companies with products whose value may be influenced by information contained in an abstract may issue a press release to coincide with the availability of an ACR abstract on the ACR website. However, the ACR continues to require that information that goes beyond that contained in the abstract (e.g., discussion of the abstract done as part of editorial news coverage) is under media embargo until 10:00 AM ET on November 14, 2024. Journalists with access to embargoed information cannot release articles or editorial news coverage before this time. Editorial news coverage is considered original articles/videos developed by employed journalists to report facts, commentary, and subject matter expert quotes in a narrative form using a variety of sources (e.g., research, announcements, press releases, events, etc.).

Violation of this policy may result in the abstract being withdrawn from the meeting and other measures deemed appropriate. Authors are responsible for notifying colleagues, institutions, communications firms, and all other stakeholders related to the development or promotion of the abstract about this policy. If you have questions about the ACR abstract embargo policy, please contact ACR abstracts staff at [email protected].

Wiley

  • Online Journal
  • Privacy Policy
  • Permissions Policies
  • Cookie Preferences

© Copyright 2025 American College of Rheumatology